R. Akchurin, A. Ramazanov, R. Valiullin, I. Nizaeva
{"title":"SIMULATION OF THERMAL STUDIES IN A WELL ON THE SIMULATOR DRILLSIM","authors":"R. Akchurin, A. Ramazanov, R. Valiullin, I. Nizaeva","doi":"10.17122/ngdelo-2023-3-88-95","DOIUrl":null,"url":null,"abstract":"The paper presents the results of studies in the well conducted specifically for testing the technique of restoring the equilibrium temperature of rocks by measured transient temperature distributions in the well. The technique is based on numerical simulation of heat exchange processes during flushing of a long-idle well and subsequent solution of the inverse problem. A depth temperature measurement was carried out in an idle well (geothermal distribution) and a series of depth temperature measurements were carried out immediately after washing after 3, 6, 9 and 12 hours. After the experiment, numerical simulation of the temperature recovery process after flushing was carried out. To do this, a simulator was developed that takes into account the thermophysical properties of rocks and mudliquid, the design of the well, as well as the history of the well. Based on the developed simulator, it is proposed to implement a solution to the inverse problem of determining the equilibrium temperature of rocks from the measured non-stationary distributions after its perturbation. As shown in the paper, the developed algorithm makes it possible to determine not only the geothermal temperature distribution, but also the flow rate of the mud liquid in the borehole during the flushing process.","PeriodicalId":9748,"journal":{"name":"Chemical and Petroleum Engineering","volume":"55 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Petroleum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17122/ngdelo-2023-3-88-95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The paper presents the results of studies in the well conducted specifically for testing the technique of restoring the equilibrium temperature of rocks by measured transient temperature distributions in the well. The technique is based on numerical simulation of heat exchange processes during flushing of a long-idle well and subsequent solution of the inverse problem. A depth temperature measurement was carried out in an idle well (geothermal distribution) and a series of depth temperature measurements were carried out immediately after washing after 3, 6, 9 and 12 hours. After the experiment, numerical simulation of the temperature recovery process after flushing was carried out. To do this, a simulator was developed that takes into account the thermophysical properties of rocks and mudliquid, the design of the well, as well as the history of the well. Based on the developed simulator, it is proposed to implement a solution to the inverse problem of determining the equilibrium temperature of rocks from the measured non-stationary distributions after its perturbation. As shown in the paper, the developed algorithm makes it possible to determine not only the geothermal temperature distribution, but also the flow rate of the mud liquid in the borehole during the flushing process.
期刊介绍:
Chemical and Petroleum Engineering publishes the latest research on Russian innovations in the field. Articles discuss developments in machinery and equipment, construction and design, processes, materials and corrosion control, and equipment-manufacturing technology. Chemical and Petroleum Engineering is a translation of the Russian journal Khimicheskoe i Neftegazovoe Mashinostroenie. The Russian Volume Year is published in English from April. All articles are peer-reviewed.