A. Gawali, S. Gawali, Surendra Sasi Kumar Jampa, M. Sinha, Jalaja B. Pandya, S. Shinde, Snigdha Khuntia
{"title":"Study on water and gas permeation characteristics with ZIF-8 mixed matrix membranes","authors":"A. Gawali, S. Gawali, Surendra Sasi Kumar Jampa, M. Sinha, Jalaja B. Pandya, S. Shinde, Snigdha Khuntia","doi":"10.2166/aqua.2023.102","DOIUrl":null,"url":null,"abstract":"\n \n The membrane separation process lacks intrinsic permeation characteristics to compete with other separation technologies like adsorption, sedimentation, coagulation, skimming, and distillation. A mixed matrix membrane (MMM) is one of the strategies to improve the separation characteristics with embedded nanofillers particles. Zeolite imidazolate framework (ZIF) has a new subclass of inorganic–organic hybrid materials that are being introduced as new fillers for incorporation into the polymer matrix for various applications such as oily wastewater separation, wastewater treatment, natural gas dehydration, landfill gas upgrading, and mixed gas separation. In this experimental work, a metal-organic framework called ZIF-8 was synthesized and used as filler for modification of MMMs and characterized with FTIR and SEM. ZIF-8 nanoparticles up to 5 wt% loading were added to PSF casting solution then the permeation characteristics of MMMs showed an improved result like the pure water flux of the modified membrane at 2.5 bar was increased up to 456.38 L/m2h. In the case of pure gas separation, at 5 wt% ZIF-8 loading in PSF, the pure gas CO2 permeability at 9 bar pressure had increased to 10.54 barrer.","PeriodicalId":34693,"journal":{"name":"AQUA-Water Infrastructure Ecosystems and Society","volume":"78 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AQUA-Water Infrastructure Ecosystems and Society","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/aqua.2023.102","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The membrane separation process lacks intrinsic permeation characteristics to compete with other separation technologies like adsorption, sedimentation, coagulation, skimming, and distillation. A mixed matrix membrane (MMM) is one of the strategies to improve the separation characteristics with embedded nanofillers particles. Zeolite imidazolate framework (ZIF) has a new subclass of inorganic–organic hybrid materials that are being introduced as new fillers for incorporation into the polymer matrix for various applications such as oily wastewater separation, wastewater treatment, natural gas dehydration, landfill gas upgrading, and mixed gas separation. In this experimental work, a metal-organic framework called ZIF-8 was synthesized and used as filler for modification of MMMs and characterized with FTIR and SEM. ZIF-8 nanoparticles up to 5 wt% loading were added to PSF casting solution then the permeation characteristics of MMMs showed an improved result like the pure water flux of the modified membrane at 2.5 bar was increased up to 456.38 L/m2h. In the case of pure gas separation, at 5 wt% ZIF-8 loading in PSF, the pure gas CO2 permeability at 9 bar pressure had increased to 10.54 barrer.