Piezoelectric Microspeaker Using Novel Driving Approach and Electrode Design for Frequency Range Improvement

Hsu-Hsiang Cheng, Sung-Cheng Lo, Yi-Jia Wang, Yu-Chen Chen, W. Lai, Meng-Lin Hsieh, Mingching Wu, W. Fang
{"title":"Piezoelectric Microspeaker Using Novel Driving Approach and Electrode Design for Frequency Range Improvement","authors":"Hsu-Hsiang Cheng, Sung-Cheng Lo, Yi-Jia Wang, Yu-Chen Chen, W. Lai, Meng-Lin Hsieh, Mingching Wu, W. Fang","doi":"10.1109/MEMS46641.2020.9056196","DOIUrl":null,"url":null,"abstract":"This study presents a novel approach and the electrode design to drive two particular vibration modes of the structure to improve the frequency range of the piezoelectric MEMS microspeaker. Extending the advantage of the spring-diaphragm structure to enhance low-frequency sound pressure level (SPL) in the previous work [1], the proposed design in this study not only sustains low-frequency SPL by the piston mode of the diaphragm actuating by the edge electrodes, but also further increases high-frequency SPL to improve frequency range by the drum mode excited by the central electrode on the diaphragm. Measurements in the standard ear simulator depict that the proposed design has a significant SPL enhancement after the first resonant peak and meanwhile maintains the performance at low frequencies. From 2.6 kHz ∼ 20 kHz, the proposed design shows an improvement of more than 15 dB SPL over the reference design.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"166 1","pages":"513-516"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS46641.2020.9056196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This study presents a novel approach and the electrode design to drive two particular vibration modes of the structure to improve the frequency range of the piezoelectric MEMS microspeaker. Extending the advantage of the spring-diaphragm structure to enhance low-frequency sound pressure level (SPL) in the previous work [1], the proposed design in this study not only sustains low-frequency SPL by the piston mode of the diaphragm actuating by the edge electrodes, but also further increases high-frequency SPL to improve frequency range by the drum mode excited by the central electrode on the diaphragm. Measurements in the standard ear simulator depict that the proposed design has a significant SPL enhancement after the first resonant peak and meanwhile maintains the performance at low frequencies. From 2.6 kHz ∼ 20 kHz, the proposed design shows an improvement of more than 15 dB SPL over the reference design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压电微扬声器采用新型驱动方法和电极设计提高频率范围
本研究提出了一种新的方法和电极设计来驱动结构的两种特定振动模式,以提高压电MEMS微扬声器的频率范围。本文的设计延续了前人研究[1]中簧膜结构提高低频声压级的优势,既通过边缘电极驱动膜片的活塞模式维持低频声压级,又通过膜片上中心电极激励的鼓式模式进一步提高高频声压级以提高频率范围。在标准耳模拟器中的测量表明,所提出的设计在第一个谐振峰之后具有显著的声压级增强,同时保持了低频的性能。在2.6 kHz ~ 20 kHz范围内,所提出的设计比参考设计提高了15 dB SPL以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Shear Modulus Determination via Quartz Crystal Resonator for Graphene Oxide Film Prepared by Drop Casting A Compact Microcontroller-Based MEMS Rate Integrating Gyroscope Module with Automatic Asymmetry Calibration Super High Frequency Simple Process Flow Cross-Sectional Lamé Mode Resonators in 20% Scandium-Doped Aluminum Nitride Robust and Sensitive Sensing of Unsteady Flows Using a Hair-Like Macroscopic Graphene Fiber Microelectromechanical Switch with Carbon Nanotube Arrays for High-Temperature Operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1