Mitsuru Yamada, Naohiko Soma, Masaya Tsuta, S. Nakamura, N. Ando, Futoshi Matsumoto
{"title":"Development of a roll-to-roll high-speed laser micro processing machine for preparing through-holed anodes and cathodes of lithium-ion batteries","authors":"Mitsuru Yamada, Naohiko Soma, Masaya Tsuta, S. Nakamura, N. Ando, Futoshi Matsumoto","doi":"10.1088/2631-7990/acd917","DOIUrl":null,"url":null,"abstract":"Aiming to improve the battery performance of lithium-ion batteries (LIBs), modification of the cathodes and anodes of LIBs using laser beams to prepare through-holes, non-through-holes or ditches arranged in grid and line patterns has been proposed by many researchers and engineers. In this study, a laser processing system attached to rollers, which realizes this modification without large changes in the present mass-production system, was developed. The laser system apparatus comprises roll-to-roll equipment and laser equipment. The roll-to-roll equipment mainly consists of a hollow cylinder with openings on its circumferential surface. Cathode and anode electrodes for LIBs are wound around the cylinder in the longitudinal direction of the electrodes. A pulsed beam reflected from the central axis of the cylinder can continuously open a large number of through-holes in the thin electrodes. Through-holes were formed at a rate of 100 000 holes per second on lithium iron phosphate cathodes and graphite anodes with this system. The through-holed cathodes and anodes prepared with this system exhibited higher C-rate performance than nontreated cathodes and anodes.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"33 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acd917","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 4
Abstract
Aiming to improve the battery performance of lithium-ion batteries (LIBs), modification of the cathodes and anodes of LIBs using laser beams to prepare through-holes, non-through-holes or ditches arranged in grid and line patterns has been proposed by many researchers and engineers. In this study, a laser processing system attached to rollers, which realizes this modification without large changes in the present mass-production system, was developed. The laser system apparatus comprises roll-to-roll equipment and laser equipment. The roll-to-roll equipment mainly consists of a hollow cylinder with openings on its circumferential surface. Cathode and anode electrodes for LIBs are wound around the cylinder in the longitudinal direction of the electrodes. A pulsed beam reflected from the central axis of the cylinder can continuously open a large number of through-holes in the thin electrodes. Through-holes were formed at a rate of 100 000 holes per second on lithium iron phosphate cathodes and graphite anodes with this system. The through-holed cathodes and anodes prepared with this system exhibited higher C-rate performance than nontreated cathodes and anodes.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.