{"title":"Cloud-Based Fuzzy Keyword Search Scheme Over Encrypted Documents","authors":"Hanya M. Abdallah, A. Taha, M. Selim","doi":"10.4018/ijskd.2021100106","DOIUrl":null,"url":null,"abstract":"With the rapid growth and adoption of cloud computing, more sensitive information is centralized onto the cloud every day. For protecting this sensitive information, it must be encrypted before being outsourced. Current search schemes allow the user to query encrypted data using keywords, but these schemes do not guarantee the privacy of queries (i.e., when the user hits query more than once with the same keywords, the server can capture information about the data). This paper focuses on the secure storage and retrieval of ciphered data with preserving query privacy. The proposed scheme deploys the sparse vector space model to represent each query, which focuses on reducing the storage and representation overheads. And the proposed scheme adds a random number to each query vector. Hence, the cloud server cannot distinguish between queries with the same keywords, which ensures the privacy of the query. Experimental results show that the proposed scheme outperforms other relevant state-of-the-art schemes.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"18 1","pages":"82-100"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijskd.2021100106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
With the rapid growth and adoption of cloud computing, more sensitive information is centralized onto the cloud every day. For protecting this sensitive information, it must be encrypted before being outsourced. Current search schemes allow the user to query encrypted data using keywords, but these schemes do not guarantee the privacy of queries (i.e., when the user hits query more than once with the same keywords, the server can capture information about the data). This paper focuses on the secure storage and retrieval of ciphered data with preserving query privacy. The proposed scheme deploys the sparse vector space model to represent each query, which focuses on reducing the storage and representation overheads. And the proposed scheme adds a random number to each query vector. Hence, the cloud server cannot distinguish between queries with the same keywords, which ensures the privacy of the query. Experimental results show that the proposed scheme outperforms other relevant state-of-the-art schemes.