Spatial-Temporal Consistency Network for Low-Latency Trajectory Forecasting

Shijie Li, Yanying Zhou, Jinhui Yi, Juergen Gall
{"title":"Spatial-Temporal Consistency Network for Low-Latency Trajectory Forecasting","authors":"Shijie Li, Yanying Zhou, Jinhui Yi, Juergen Gall","doi":"10.1109/ICCV48922.2021.00195","DOIUrl":null,"url":null,"abstract":"Trajectory forecasting is a crucial step for autonomous vehicles and mobile robots in order to navigate and interact safely. In order to handle the spatial interactions between objects, graph-based approaches have been proposed. These methods, however, model motion on a frame-to-frame basis and do not provide a strong temporal model. To overcome this limitation, we propose a compact model called Spatial-Temporal Consistency Network (STC-Net). In STC-Net, dilated temporal convolutions are introduced to model long-range dependencies along each trajectory for better temporal modeling while graph convolutions are employed to model the spatial interaction among different trajectories. Furthermore, we propose a feature-wise convolution to generate the predicted trajectories in one pass and refine the forecast trajectories together with the reconstructed observed trajectories. We demonstrate that STC-Net generates spatially and temporally consistent trajectories and outperforms other graph-based methods. Since STC-Net requires only 0.7k parameters and forecasts the future with a latency of only 1.3ms, it advances the state-of-the-art and satisfies the requirements for realistic applications.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"95 1","pages":"1920-1929"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Trajectory forecasting is a crucial step for autonomous vehicles and mobile robots in order to navigate and interact safely. In order to handle the spatial interactions between objects, graph-based approaches have been proposed. These methods, however, model motion on a frame-to-frame basis and do not provide a strong temporal model. To overcome this limitation, we propose a compact model called Spatial-Temporal Consistency Network (STC-Net). In STC-Net, dilated temporal convolutions are introduced to model long-range dependencies along each trajectory for better temporal modeling while graph convolutions are employed to model the spatial interaction among different trajectories. Furthermore, we propose a feature-wise convolution to generate the predicted trajectories in one pass and refine the forecast trajectories together with the reconstructed observed trajectories. We demonstrate that STC-Net generates spatially and temporally consistent trajectories and outperforms other graph-based methods. Since STC-Net requires only 0.7k parameters and forecasts the future with a latency of only 1.3ms, it advances the state-of-the-art and satisfies the requirements for realistic applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低延迟轨迹预测的时空一致性网络
轨迹预测是自动驾驶汽车和移动机器人安全导航和交互的关键步骤。为了处理对象间的空间交互,提出了基于图的方法。然而,这些方法在帧到帧的基础上建模运动,并没有提供一个强大的时间模型。为了克服这一限制,我们提出了一个紧凑的时空一致性网络(STC-Net)模型。在STC-Net中,为了更好地进行时间建模,引入了扩展时间卷积来模拟每条轨迹上的远程依赖关系,而使用图卷积来模拟不同轨迹之间的空间相互作用。此外,我们提出了一种特征卷积来一次生成预测轨迹,并将预测轨迹与重建的观测轨迹一起改进。我们证明STC-Net生成空间和时间一致的轨迹,并且优于其他基于图的方法。由于STC-Net只需要0.7k个参数,预测未来的延迟仅为1.3ms,因此它是最先进的,满足了现实应用的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Naturalistic Physical Adversarial Patch for Object Detectors Polarimetric Helmholtz Stereopsis Deep Transport Network for Unsupervised Video Object Segmentation Real-time Vanishing Point Detector Integrating Under-parameterized RANSAC and Hough Transform Adaptive Label Noise Cleaning with Meta-Supervision for Deep Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1