{"title":"To reduce maximum tardiness by Seru Production: model, cooperative algorithm combining reinforcement learning and insights","authors":"Guanghui Fu, Yang Yu, Wei Sun, I. Kaku","doi":"10.5267/j.ijiec.2022.10.002","DOIUrl":null,"url":null,"abstract":"The maximum tardiness reflects the worst level of service associated with customer needs; thus, the principle that seru production reduces the maximum tardiness is investigated, and a model to minimize the maximum tardiness of the seru production system is established. In order to obtain the exact solution, the non-linear seru production model with minimizing the maximum tardiness is split into a seru formation model and a linear seru scheduling model. We propose an efficient cooperative algorithm using a genetic algorithm and an innovative reinforcement learning algorithm (CAGARL) for large-scale problems. Specifically, the GA is designed for the seru formation problem. Moreover, the QL-seru algorithm (QLSA) is designed for the seru scheduling problem by combining the features of meta-heuristics and reinforcement learning. In the QLSA, we design an innovative QL-seru table and two state trimming rules to save computational time. After extensive experiments, compared with the previous algorithm, CAGARL improved by an average of 56.6%. Finally, several managerial insights on reducing maximum tardiness are proposed.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"91 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Engineering Computations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5267/j.ijiec.2022.10.002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1
Abstract
The maximum tardiness reflects the worst level of service associated with customer needs; thus, the principle that seru production reduces the maximum tardiness is investigated, and a model to minimize the maximum tardiness of the seru production system is established. In order to obtain the exact solution, the non-linear seru production model with minimizing the maximum tardiness is split into a seru formation model and a linear seru scheduling model. We propose an efficient cooperative algorithm using a genetic algorithm and an innovative reinforcement learning algorithm (CAGARL) for large-scale problems. Specifically, the GA is designed for the seru formation problem. Moreover, the QL-seru algorithm (QLSA) is designed for the seru scheduling problem by combining the features of meta-heuristics and reinforcement learning. In the QLSA, we design an innovative QL-seru table and two state trimming rules to save computational time. After extensive experiments, compared with the previous algorithm, CAGARL improved by an average of 56.6%. Finally, several managerial insights on reducing maximum tardiness are proposed.