TAD-Net: tooth axis detection network based on rotation transformation encoding

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Graphical Models Pub Date : 2022-05-01 DOI:10.1016/j.gmod.2022.101138
Yeying Fan , Qian Ma , Guangshun Wei , Zhiming Cui , Yuanfeng Zhou , Wenping Wang
{"title":"TAD-Net: tooth axis detection network based on rotation transformation encoding","authors":"Yeying Fan ,&nbsp;Qian Ma ,&nbsp;Guangshun Wei ,&nbsp;Zhiming Cui ,&nbsp;Yuanfeng Zhou ,&nbsp;Wenping Wang","doi":"10.1016/j.gmod.2022.101138","DOIUrl":null,"url":null,"abstract":"<div><p>The tooth axes, defined on 3D tooth model, play a key role in digital orthodontics, which is usually used as an important reference in automatic tooth arrangement and anomaly detection<span>. In this paper, we propose an automatic deep learning network (TAD-Net) of tooth axis detection based on rotation transformation encoding. By utilizing quaternion transformation, we convert the geometric rotation transformation of the tooth axes into the feature encoding of the point cloud of 3D tooth models. Furthermore, the feature confidence-aware attention mechanism is adopted to generate dynamic weights for the features of each point to improve the network learning accuracy. Experimental results show that the proposed method has achieved higher detection accuracy on the constructed dental data set compared with the existing networks.</span></p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"121 ","pages":"Article 101138"},"PeriodicalIF":2.5000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070322000157","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The tooth axes, defined on 3D tooth model, play a key role in digital orthodontics, which is usually used as an important reference in automatic tooth arrangement and anomaly detection. In this paper, we propose an automatic deep learning network (TAD-Net) of tooth axis detection based on rotation transformation encoding. By utilizing quaternion transformation, we convert the geometric rotation transformation of the tooth axes into the feature encoding of the point cloud of 3D tooth models. Furthermore, the feature confidence-aware attention mechanism is adopted to generate dynamic weights for the features of each point to improve the network learning accuracy. Experimental results show that the proposed method has achieved higher detection accuracy on the constructed dental data set compared with the existing networks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TAD-Net:基于旋转变换编码的齿轴检测网络
在三维牙齿模型上定义的牙轴在数字正畸中起着关键作用,通常作为自动排牙和异常检测的重要参考。本文提出了一种基于旋转变换编码的齿轴检测自动深度学习网络(TAD-Net)。利用四元数变换,将齿轴的几何旋转变换转化为三维齿模型点云的特征编码。进一步,采用特征置信度感知注意机制,对每个点的特征生成动态权值,提高网络的学习精度。实验结果表明,与现有网络相比,该方法在构建的牙齿数据集上取得了更高的检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
期刊最新文献
HammingVis: A visual analytics approach for understanding erroneous outcomes of quantum computing in hamming space A detail-preserving method for medial mesh computation in triangular meshes Exploring the neural landscape: Visual analytics of neuron activation in large language models with NeuronautLLM GarTemFormer: Temporal transformer-based for optimizing virtual garment animation Building semantic segmentation from large-scale point clouds via primitive recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1