{"title":"Consensus halving is PPA-complete","authors":"Aris Filos-Ratsikas, P. Goldberg","doi":"10.1145/3188745.3188880","DOIUrl":null,"url":null,"abstract":"We show that the computational problem Consensus Halving is PPA-Complete, the first PPA-Completeness result for a problem whose definition does not involve an explicit circuit. We also show that an approximate version of this problem is polynomial-time equivalent to Necklace Splitting, which establishes PPAD-hardness for Necklace Splitting and suggests that it is also PPA-Complete.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"69 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
We show that the computational problem Consensus Halving is PPA-Complete, the first PPA-Completeness result for a problem whose definition does not involve an explicit circuit. We also show that an approximate version of this problem is polynomial-time equivalent to Necklace Splitting, which establishes PPAD-hardness for Necklace Splitting and suggests that it is also PPA-Complete.