{"title":"A comparison of software engineering domain specific sentiment analysis tools","authors":"M. R. Islam, M. Zibran","doi":"10.1109/SANER.2018.8330245","DOIUrl":null,"url":null,"abstract":"Sentiment Analysis (SA) in software engineering (SE) text has drawn immense interests recently. The poor performance of general-purpose SA tools, when operated on SE text, has led to recent emergence of domain-specific SA tools especially designed for SE text. However, these domain-specific tools were tested on single dataset and their performances were compared mainly against general-purpose tools. Thus, two things remain unclear: (i) how well these tools really work on other datasets, and (ii) which tool to choose in which context. To address these concerns, we operate three recent domain-specific SA tools on three separate datasets. Using standard accuracy measurement metrics, we compute and compare their accuracies in the detection of sentiments in SE text.","PeriodicalId":6602,"journal":{"name":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"51 1","pages":"487-491"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2018.8330245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Sentiment Analysis (SA) in software engineering (SE) text has drawn immense interests recently. The poor performance of general-purpose SA tools, when operated on SE text, has led to recent emergence of domain-specific SA tools especially designed for SE text. However, these domain-specific tools were tested on single dataset and their performances were compared mainly against general-purpose tools. Thus, two things remain unclear: (i) how well these tools really work on other datasets, and (ii) which tool to choose in which context. To address these concerns, we operate three recent domain-specific SA tools on three separate datasets. Using standard accuracy measurement metrics, we compute and compare their accuracies in the detection of sentiments in SE text.