A statistical hypothesis test-based image segmentation for low-bit rate coding

Seoung-Jun Oh, Byungsun Bang, E. S. Kim
{"title":"A statistical hypothesis test-based image segmentation for low-bit rate coding","authors":"Seoung-Jun Oh, Byungsun Bang, E. S. Kim","doi":"10.1109/APCAS.1996.569238","DOIUrl":null,"url":null,"abstract":"We proposed a new image segmentation algorithm, called \"SC-SAM\", which checks the homogeneity of an image block using a statistical hypothesis test. SC-SAM consists of five processes: a split process, edge region adjustment, a merge process, postprocessing, and region representation. ShortCut test is applied to split a block as well as to merge two homogeneous regions into a region. A threshold value for the region homogeneity test can be chosen theoretically. SC-SAM can provide relatively very low computational complexity as well as keep the quality of a reconstructed image. Furthermore, SC-SAM removes the necessity of a control map used for refining the output in conventional algorithms. SC-SAM can considerably reduce the number of merged regions and computational time, while retaining the visual quality of the reconstructed image.","PeriodicalId":20507,"journal":{"name":"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems","volume":"20 1","pages":"137-140"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCAS.1996.569238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We proposed a new image segmentation algorithm, called "SC-SAM", which checks the homogeneity of an image block using a statistical hypothesis test. SC-SAM consists of five processes: a split process, edge region adjustment, a merge process, postprocessing, and region representation. ShortCut test is applied to split a block as well as to merge two homogeneous regions into a region. A threshold value for the region homogeneity test can be chosen theoretically. SC-SAM can provide relatively very low computational complexity as well as keep the quality of a reconstructed image. Furthermore, SC-SAM removes the necessity of a control map used for refining the output in conventional algorithms. SC-SAM can considerably reduce the number of merged regions and computational time, while retaining the visual quality of the reconstructed image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于统计假设检验的低比特率编码图像分割
我们提出了一种新的图像分割算法,称为SC-SAM,它使用统计假设检验来检查图像块的同质性。SC-SAM包括五个过程:分割过程、边缘区域调整过程、合并过程、后处理过程和区域表示过程。快捷测试可以用于分割块,也可以用于将两个同质区域合并为一个区域。理论上可以选择区域均匀性检验的阈值。SC-SAM可以提供相对非常低的计算复杂度,并保持重建图像的质量。此外,SC-SAM消除了在传统算法中用于精炼输出的控制映射的必要性。SC-SAM在保留重建图像的视觉质量的同时,大大减少了合并区域的数量和计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Delay analysis of coupled transmission lines Fast iterative image restoration algorithms The roundoff noise analysis for block digital filters realized in cascade form A regenerator section overhead processing chip set for STM-64 Recent trends in image restoration and enhancement techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1