Bruno Miguel Batista Pereira, J. M. Torres, P. Sobral, R. Moreira, C. Soares, Ivo Pereira
{"title":"Blockchain-Based Electronic Voting: A Secure and Transparent Solution","authors":"Bruno Miguel Batista Pereira, J. M. Torres, P. Sobral, R. Moreira, C. Soares, Ivo Pereira","doi":"10.3390/cryptography7020027","DOIUrl":null,"url":null,"abstract":"Since its appearance in 2008, blockchain technology has found multiple uses in fields such as banking, supply chain management, and healthcare. One of the most intriguing uses of blockchain is in voting systems, where the technology can overcome the security and transparency concerns that plague traditional voting systems. This paper provides a thorough examination of the implementation of a blockchain-based voting system. The proposed system employs cryptographic methods to protect voters’ privacy and anonymity while ensuring the verifiability and integrity of election results. Digital signatures, homomorphic encryption (He), zero-knowledge proofs (ZKPs), and the Byzantine fault-tolerant consensus method underpin the system. A review of the literature on the use of blockchain technology for voting systems supports the analysis and the technical and logistical constraints connected with implementing the suggested system. The study suggests solutions to problems such as managing voter identification and authentication, ensuring accessibility for all voters, and dealing with network latency and scalability. The suggested blockchain-based voting system can provide a safe and transparent platform for casting and counting votes, ensuring election results’ privacy, anonymity, and verifiability. The implementation of blockchain technology can overcome traditional voting systems’ security and transparency shortcomings while also delivering a high level of integrity and traceability.","PeriodicalId":13186,"journal":{"name":"IACR Trans. Cryptogr. Hardw. Embed. Syst.","volume":"74 1","pages":"27"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Trans. Cryptogr. Hardw. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryptography7020027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Since its appearance in 2008, blockchain technology has found multiple uses in fields such as banking, supply chain management, and healthcare. One of the most intriguing uses of blockchain is in voting systems, where the technology can overcome the security and transparency concerns that plague traditional voting systems. This paper provides a thorough examination of the implementation of a blockchain-based voting system. The proposed system employs cryptographic methods to protect voters’ privacy and anonymity while ensuring the verifiability and integrity of election results. Digital signatures, homomorphic encryption (He), zero-knowledge proofs (ZKPs), and the Byzantine fault-tolerant consensus method underpin the system. A review of the literature on the use of blockchain technology for voting systems supports the analysis and the technical and logistical constraints connected with implementing the suggested system. The study suggests solutions to problems such as managing voter identification and authentication, ensuring accessibility for all voters, and dealing with network latency and scalability. The suggested blockchain-based voting system can provide a safe and transparent platform for casting and counting votes, ensuring election results’ privacy, anonymity, and verifiability. The implementation of blockchain technology can overcome traditional voting systems’ security and transparency shortcomings while also delivering a high level of integrity and traceability.