Propensity score estimation using variational method on spatial logistic regression

H. N. Rizka, Y. Widyaningsih
{"title":"Propensity score estimation using variational method on spatial logistic regression","authors":"H. N. Rizka, Y. Widyaningsih","doi":"10.1063/5.0059068","DOIUrl":null,"url":null,"abstract":"Propensity score can be described as a probability of certain treatments conditional to the given observed covariates. Propensity score is one of the known methods to allows an observational study emulating certain characteristics from that of a randomized trial. The most common method used to estimate this score is the logistic regression model. Logistic regression can be used to model the probability of a certain event. With the advancement that is happening to spatial statistics, one can also build a logistic regression model that takes into consideration to that of spatial dependence. Thus, accommodate the spatial effect that is likely happening on observation data that came from different places. Problem arises from this model, that is the estimation of the parameters on the spatial logistic model. EM algorithm which is needed for this problem, still requires another adjustment since the expectation in the E-step is not available in closed form. Variational method modification is then proposed as an alternative for this problem. This paper reviews the propensity score estimation using spatial logistic regression and discusses the variational method as an alternative method to tackle the problem in estimating the parameters on the spatial logistic regression model in a theoretical study.","PeriodicalId":20561,"journal":{"name":"PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020)","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0059068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Propensity score can be described as a probability of certain treatments conditional to the given observed covariates. Propensity score is one of the known methods to allows an observational study emulating certain characteristics from that of a randomized trial. The most common method used to estimate this score is the logistic regression model. Logistic regression can be used to model the probability of a certain event. With the advancement that is happening to spatial statistics, one can also build a logistic regression model that takes into consideration to that of spatial dependence. Thus, accommodate the spatial effect that is likely happening on observation data that came from different places. Problem arises from this model, that is the estimation of the parameters on the spatial logistic model. EM algorithm which is needed for this problem, still requires another adjustment since the expectation in the E-step is not available in closed form. Variational method modification is then proposed as an alternative for this problem. This paper reviews the propensity score estimation using spatial logistic regression and discusses the variational method as an alternative method to tackle the problem in estimating the parameters on the spatial logistic regression model in a theoretical study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间逻辑回归的变分法倾向得分估计
倾向得分可以被描述为特定处理的概率,条件是给定观察到的协变量。倾向评分是一种已知的方法,可以使观察性研究模仿随机试验的某些特征。估计这个分数最常用的方法是逻辑回归模型。逻辑回归可以用来对某一事件的概率进行建模。随着空间统计的进步,人们也可以建立一个考虑到空间依赖性的逻辑回归模型。因此,适应可能发生在来自不同地方的观测数据上的空间效应。该模型存在一个问题,即空间逻辑模型的参数估计问题。该问题需要EM算法,但由于e步中的期望不能以封闭形式得到,因此还需要进行另一次调整。然后提出变分法修正作为该问题的替代方法。本文综述了利用空间逻辑回归进行倾向得分估计的方法,并从理论上讨论了变分法作为解决空间逻辑回归模型参数估计问题的一种替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Singular Integral Operators, Quantitative Flatness, and Boundary Problems Mirzakhani’s Curve Counting and Geodesic Currents The conception of national nuclear emergency preparedness system from the state defense perspective Computer security regulation for nuclear installation: A suggestion Optimal reinsurance combination of quota-share and stop-loss reinsurance based on conditional-tail-expectation (CTE) optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1