Effect of chromium addition on the copper binder structure, properties and adhesion to diamond

P. Loginov, G. M. Markov, S. Rupasov
{"title":"Effect of chromium addition on the copper binder structure, properties and adhesion to diamond","authors":"P. Loginov, G. M. Markov, S. Rupasov","doi":"10.17073/1997-308x-2022-1-43-48","DOIUrl":null,"url":null,"abstract":"The study covers the effect of chromium on the structure, mechanical properties, and adhesion of alloys used as a binder for metal-diamond composites. Cu–Cr powder mixtures were obtained by high-energy ball milling in a planetary centrifugal mill. This process was used to obtain two-phase Cu–Cr powders with uniformly distributed submicron Cr particles. Cu–Х%Cr compact samples (where Х = 10, 30 and 50 %) were obtained by hot pressing. It was found that Cu–30%Cr compact samples showed the best mechanical properties (9 times higher as compared to pure copper). These alloys feature a hardening mechanism based on the Hall–Petch law. The resulting alloys have a homogenous ultrafine structure, which results in high ultimate bending strength (2330 MPa). Chromium addition to the copper binder considerably increases its adhesion to diamond in metal-diamond composites due to chemical interaction between chromium included into the binder and diamond carbon with Cr3C2 carbide formation.","PeriodicalId":14693,"journal":{"name":"Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/1997-308x-2022-1-43-48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study covers the effect of chromium on the structure, mechanical properties, and adhesion of alloys used as a binder for metal-diamond composites. Cu–Cr powder mixtures were obtained by high-energy ball milling in a planetary centrifugal mill. This process was used to obtain two-phase Cu–Cr powders with uniformly distributed submicron Cr particles. Cu–Х%Cr compact samples (where Х = 10, 30 and 50 %) were obtained by hot pressing. It was found that Cu–30%Cr compact samples showed the best mechanical properties (9 times higher as compared to pure copper). These alloys feature a hardening mechanism based on the Hall–Petch law. The resulting alloys have a homogenous ultrafine structure, which results in high ultimate bending strength (2330 MPa). Chromium addition to the copper binder considerably increases its adhesion to diamond in metal-diamond composites due to chemical interaction between chromium included into the binder and diamond carbon with Cr3C2 carbide formation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
添加铬对铜粘结剂结构、性能及与金刚石结合力的影响
研究了铬对金属-金刚石复合材料的结构、机械性能和附着力的影响。采用行星离心磨高能球磨法制备了铜铬混合粉末。采用该工艺制备了具有均匀分布的亚微米级Cr颗粒的两相Cu-Cr粉末。通过热压得到Cu -Х %Cr压实样品(其中Х = 10,30和50%)。结果表明,Cu-30%Cr致密试样的力学性能最好,是纯铜的9倍。这些合金具有基于霍尔-佩奇定律的硬化机制。所得合金具有均匀的超细组织,具有较高的极限抗弯强度(2330 MPa)。在金属-金刚石复合材料中,铜结合剂中加入铬可显著提高其与金刚石的附着力,这是由于结合剂中的铬与金刚石碳发生化学作用,形成Cr3C2碳化物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In memory of Yuri Mikhailovich Maksimov Air-thermal oxidation of diamond nanopowders obtained by the methods of mechanical grinding and detonation synthesis Features of the impact of hot isostatic pressing and heat treatment on the structure and properties of maraging steel obtained by selective laser melting method Features of SHS of multicomponent carbides SHS of highly dispersed powder compositions of nitrides with silicon carbide Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1