A Comparitive Study of Support Vector Machine and Logistic Regression in Credit Scorecard Model

Kiruthika, M. Dilsha
{"title":"A Comparitive Study of Support Vector Machine and Logistic Regression in Credit Scorecard Model","authors":"Kiruthika, M. Dilsha","doi":"10.6186/IJIMS.2015.26.4.6","DOIUrl":null,"url":null,"abstract":"Credit analysts generally assess the risk of credit applications based on their previous experience. They frequently employ quantitative methods to this end. Most of the financial and banking institutions are using logistic regression to build a credit scorecard. Among the new method, Support Vector Machines (SVM) has been applied in various studies of scorecard modelling. SVM classification is currently an active research area and successfully solves classification problems in many domains. This paper uses standard logistic regression models and compares them with the more advanced least squares support vector machine models with linear and radial basis function kernels. A microfinance data set is used to test the model performance.","PeriodicalId":39953,"journal":{"name":"International Journal of Information and Management Sciences","volume":"43 1","pages":"411-422"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6186/IJIMS.2015.26.4.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Credit analysts generally assess the risk of credit applications based on their previous experience. They frequently employ quantitative methods to this end. Most of the financial and banking institutions are using logistic regression to build a credit scorecard. Among the new method, Support Vector Machines (SVM) has been applied in various studies of scorecard modelling. SVM classification is currently an active research area and successfully solves classification problems in many domains. This paper uses standard logistic regression models and compares them with the more advanced least squares support vector machine models with linear and radial basis function kernels. A microfinance data set is used to test the model performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持向量机与Logistic回归在信用记分卡模型中的比较研究
信用分析师通常根据他们以前的经验来评估信用申请的风险。为此,他们经常采用定量方法。大多数金融和银行机构都在使用逻辑回归来建立信用记分卡。在新的方法中,支持向量机(SVM)已应用于记分卡建模的各种研究中。支持向量机分类是目前一个活跃的研究领域,它成功地解决了许多领域的分类问题。本文使用标准逻辑回归模型,并将其与更先进的具有线性和径向基函数核的最小二乘支持向量机模型进行比较。使用一个小额信贷数据集来测试模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Information and Management Sciences
International Journal of Information and Management Sciences Engineering-Industrial and Manufacturing Engineering
CiteScore
0.90
自引率
0.00%
发文量
0
期刊介绍: - Information Management - Management Sciences - Operation Research - Decision Theory - System Theory - Statistics - Business Administration - Finance - Numerical computations - Statistical simulations - Decision support system - Expert system - Knowledge-based systems - Artificial intelligence
期刊最新文献
Live-Streaming Consumer Experience; the Future of E-commerce and Digital Marketing in Africa: Evidence from China Entrepreneur’s Human Capital and Business Model Innovation: The Meditation Role of Access to Start-Up Resources Skills and Competences for Utilization of Web Storage Technology (WST) Platform for Academic Activities by Faculty Members in Faculty of Education, Ahmadu Bello University, Zaria Adopting a Pragmatic Approach to Rural Information Systems and Services Delivery for Sustainable Community Development in Nigeria Fire Safety Management in High Rise Buildings of Lahore, Pakistan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1