A meta-algorithm for classification by feature nomination

Rituparna Sarkar, K. Skadron, S. Acton
{"title":"A meta-algorithm for classification by feature nomination","authors":"Rituparna Sarkar, K. Skadron, S. Acton","doi":"10.1109/ICIP.2014.7026050","DOIUrl":null,"url":null,"abstract":"With increasing complexity of the dataset it becomes impractical to use a single feature to characterize all constituent images. In this paper we describe a method that will automatically select the appropriate image features that are relevant and efficacious for classification, without requiring modifications to the feature extracting methods or the classification algorithm. We first describe a method for designing class distinctive dictionaries using a dictionary learning technique, which yields class specific sparse codes and a linear classifier parameter. Then, we apply information theoretic measures to obtain the more informative feature relevant to a test image and use only that feature to obtain final classification results. With at least one of the features classifying the query accurately, our algorithm chooses the correct feature in 88.9% of the trials.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"67 1","pages":"5187-5191"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7026050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With increasing complexity of the dataset it becomes impractical to use a single feature to characterize all constituent images. In this paper we describe a method that will automatically select the appropriate image features that are relevant and efficacious for classification, without requiring modifications to the feature extracting methods or the classification algorithm. We first describe a method for designing class distinctive dictionaries using a dictionary learning technique, which yields class specific sparse codes and a linear classifier parameter. Then, we apply information theoretic measures to obtain the more informative feature relevant to a test image and use only that feature to obtain final classification results. With at least one of the features classifying the query accurately, our algorithm chooses the correct feature in 88.9% of the trials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征提名的分类元算法
随着数据集复杂性的增加,使用单个特征来描述所有组成图像变得不切实际。在本文中,我们描述了一种不需要修改特征提取方法或分类算法,自动选择合适且有效的图像特征进行分类的方法。我们首先描述了一种使用字典学习技术设计类独特字典的方法,该方法产生类特定的稀疏代码和线性分类器参数。然后,我们应用信息论方法获得与测试图像相关的更多信息特征,并仅使用该特征来获得最终的分类结果。至少有一个特征可以准确地分类查询,我们的算法在88.9%的试验中选择了正确的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1