Optimization of Uniaxial Tensile Stress-Strain Response of 3D Angle Interlock Woven Fabric Composite using Weft Density and Draw-In Plan Variables

IF 1.1 Q4 ENGINEERING, MECHANICAL Journal of Mechanical Engineering and Sciences Pub Date : 2023-04-15 DOI:10.24191/jmeche.v20i2.22062
M. F. Yahya
{"title":"Optimization of Uniaxial Tensile Stress-Strain Response of 3D Angle Interlock Woven Fabric Composite using Weft Density and Draw-In Plan Variables","authors":"M. F. Yahya","doi":"10.24191/jmeche.v20i2.22062","DOIUrl":null,"url":null,"abstract":"Currently, 2D woven composites are extensively incorporated into a variety of technical automotive body parts and protective body armor owing to their excellent fabric strength performance. However, there is still a lack of attempts to utilize 3D woven fabrics for the same technical application. Hence, it is vital to examine the fundamental tensile strength of woven fabric composite materials when determining their suitability for end-use applications. This study aimed to investigate the novel effects of two parameters on the uniaxial tensile strength of a high-tenacity polyester three-layer 3D angle interlock (3DAI) woven fabric composite, namely, weave drafting draw-in insertion and weave density. Four different drafting patterns were considered: pointed (DRW 1), broken (DRW 2), broken mirror (DRW 3), and straight (DRW 4), for weft density at 14 and 25 pick.cm-1. Samples of the 3DAI woven fabric reinforced with epoxy composite at different drafting patterns and weft density combinations were produced and tested. Consequently, the maximum tensile stress and strain were recorded in the woven fabric composite sample with DRW 4 and 25 pick.cm-1 at 113 MPa and 11%, respectively. The study shows that different weft densities and draw-in plan settings play a significant role in the tensile strength performance of the 3DAI woven composite.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jmeche.v20i2.22062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, 2D woven composites are extensively incorporated into a variety of technical automotive body parts and protective body armor owing to their excellent fabric strength performance. However, there is still a lack of attempts to utilize 3D woven fabrics for the same technical application. Hence, it is vital to examine the fundamental tensile strength of woven fabric composite materials when determining their suitability for end-use applications. This study aimed to investigate the novel effects of two parameters on the uniaxial tensile strength of a high-tenacity polyester three-layer 3D angle interlock (3DAI) woven fabric composite, namely, weave drafting draw-in insertion and weave density. Four different drafting patterns were considered: pointed (DRW 1), broken (DRW 2), broken mirror (DRW 3), and straight (DRW 4), for weft density at 14 and 25 pick.cm-1. Samples of the 3DAI woven fabric reinforced with epoxy composite at different drafting patterns and weft density combinations were produced and tested. Consequently, the maximum tensile stress and strain were recorded in the woven fabric composite sample with DRW 4 and 25 pick.cm-1 at 113 MPa and 11%, respectively. The study shows that different weft densities and draw-in plan settings play a significant role in the tensile strength performance of the 3DAI woven composite.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纬纱密度和拉拔平面变量优化三维角度互锁机织复合材料单轴拉伸应力-应变响应
目前,二维编织复合材料由于其优异的织物强度性能,被广泛应用于各种技术汽车车身部件和防护装甲中。然而,在同样的技术应用中,仍然缺乏利用3D机织物的尝试。因此,在确定机织复合材料是否适合最终用途时,检查其基本抗拉强度至关重要。本研究旨在探讨两个参数对高强涤纶三层三维角互锁(3DAI)机织物复合材料单轴拉伸强度的新影响,即组织牵伸、拉伸和组织密度。考虑了四种不同的牵伸模式:尖(DRW 1),破(DRW 2),破镜(DRW 3)和直(DRW 4),纬纱密度为14和25 pick.cm-1。制作并测试了环氧复合材料增强3DAI机织织物在不同牵伸图案和纬密度组合下的样品。结果表明,采用drw4和25挑片的机织物复合材料试样的最大拉伸应力和应变均得到了记录。在113 MPa下cm-1和11%。研究表明,不同纬密度和拉拔方案设置对3DAI机织复合材料的拉伸强度性能有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
期刊最新文献
Investigation of collision estimation with vehicle and pedestrian using CARLA simulation software Active suspension for all-terrain vehicle with intelligent control using artificial neural networks The influence of helmet certification in motorcycle helmets protective performance Sustainable considerations in additive manufacturing processes: A review Co-simulation approach for computational aero-acoustic modeling: Investigating wind-induced noise within two-way radio microphone ports cavity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1