{"title":"Hydrothermal Synthesis and Characterization of SnO2 Nanosheets","authors":"J. Hassan","doi":"10.4028/p-i74stb","DOIUrl":null,"url":null,"abstract":"Increasing the demand to explore the nanomaterials properties to be used in numerous applications have emerged considerable effort to developing synthesis methods. Herein, Tin oxide (SnO2) nanosheets have been prepared by a facile one step hydrothermal method using Teflon-lined steel at synthesis temperature of 120 C for 12 hours. As synthesis material were characterized by Field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD) to revealing the morphology and structural properties. As a result, SnO2 nanosheets have been obtained with thickness around 15 nm with a clear sheets morphology. XRD pattern showed one phase structural with absence of impurities phases. Optical properties for nanosheets suspended in ethanol were investigated using steady state photoluminescence and UV-Vis absorption technics. The result showed four peaks centered at 380 nm, 445 nm, 475 nm, and 500 nm related to near band to band emission and defects states. Keywords: SnO2, Nanosheets, hydrothermal, XRD","PeriodicalId":7271,"journal":{"name":"Advanced Materials Research","volume":"43 1","pages":"47 - 53"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-i74stb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing the demand to explore the nanomaterials properties to be used in numerous applications have emerged considerable effort to developing synthesis methods. Herein, Tin oxide (SnO2) nanosheets have been prepared by a facile one step hydrothermal method using Teflon-lined steel at synthesis temperature of 120 C for 12 hours. As synthesis material were characterized by Field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD) to revealing the morphology and structural properties. As a result, SnO2 nanosheets have been obtained with thickness around 15 nm with a clear sheets morphology. XRD pattern showed one phase structural with absence of impurities phases. Optical properties for nanosheets suspended in ethanol were investigated using steady state photoluminescence and UV-Vis absorption technics. The result showed four peaks centered at 380 nm, 445 nm, 475 nm, and 500 nm related to near band to band emission and defects states. Keywords: SnO2, Nanosheets, hydrothermal, XRD