Hydroxyapatite Humidifier Vibrator Housing Fabrication and Characteristics

S. Kim, Sung-Kug Hwang, Joon Hyub Kim, S. Ryu
{"title":"Hydroxyapatite Humidifier Vibrator Housing Fabrication and Characteristics","authors":"S. Kim, Sung-Kug Hwang, Joon Hyub Kim, S. Ryu","doi":"10.32732/jma.2022.11.2.58","DOIUrl":null,"url":null,"abstract":"The humidifier vibrator housing is difficult to clean and prone to contamination due to its metallic material. To overcome these shortcomings, the humidifier vibrator housing was manufactured using Hydroxyapatite as a raw material. Although hydroxyapatite has excellent antibacterial properties and biocompatibility, it is difficult to manufacture a sintered body due to its weak fracture toughness. Therefore, hydroxyapatite sintered compacts were prepared according to the amount of plasticizer added and their physical properties were compared. The average compressive strength was 395.1 N·mm-2 at 8 % of the amount of added plasticizer, and the average bending strength was 61.8 N·mm-2 at 6 % of the amount of added plasticizer. The hydroxyapatite sintered compact showed the effect of inhibiting the production of bacteria regardless of the amount of plasticizer added. As a result of this physical property study, it was possible to develop a humidifier vibrator housing with excellent antibacterial properties and maintaining mechanical strength.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32732/jma.2022.11.2.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The humidifier vibrator housing is difficult to clean and prone to contamination due to its metallic material. To overcome these shortcomings, the humidifier vibrator housing was manufactured using Hydroxyapatite as a raw material. Although hydroxyapatite has excellent antibacterial properties and biocompatibility, it is difficult to manufacture a sintered body due to its weak fracture toughness. Therefore, hydroxyapatite sintered compacts were prepared according to the amount of plasticizer added and their physical properties were compared. The average compressive strength was 395.1 N·mm-2 at 8 % of the amount of added plasticizer, and the average bending strength was 61.8 N·mm-2 at 6 % of the amount of added plasticizer. The hydroxyapatite sintered compact showed the effect of inhibiting the production of bacteria regardless of the amount of plasticizer added. As a result of this physical property study, it was possible to develop a humidifier vibrator housing with excellent antibacterial properties and maintaining mechanical strength.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
羟基磷灰石加湿器振动器外壳制造及特性
加湿器振动器外壳由于是金属材质,不易清洗,容易受到污染。为了克服这些缺点,以羟基磷灰石为原料制造了加湿器振动器外壳。羟基磷灰石虽然具有优良的抗菌性能和生物相容性,但由于其断裂韧性较弱,难以制备烧结体。因此,根据增塑剂的添加量制备了羟基磷灰石烧结坯,并对其物理性能进行了比较。当增塑剂添加量为8%时,平均抗压强度为395.1 N·mm-2;当增塑剂添加量为6%时,平均抗折强度为61.8 N·mm-2。羟基磷灰石烧结致密体与增塑剂的添加量无关,均表现出抑制细菌产生的效果。由于这项物理性能研究的结果,有可能开发出具有优异抗菌性能和保持机械强度的加湿器振动器外壳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graphene Oxide Nanocarriers for Effective Drug Delivery in Breast Cancer Treatment Thermal Insulation of “akassa” Hot Preservation Baskets Using Cow Dung Coatings Review on Fundamental Considerations During Lignocellulosic Fiber Characterization in Light Micromechanical Analysis of Their Composites Surface Modification of Ti-6Al-4V Alloy by Polycaprolactone-Graphene Oxide Composite Coating Dielectric Relaxation, Electric Conductivity and Thermodynamic Studies on Epoxy Polyurethane Blend and Their Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1