Iterative Tensor Receiver for MIMO-GFDM systems

D. Rakhimov, Sai Pavan Deram, Bruno Sokal, Kristina Naskovska, A. D. Almeida, M. Haardt
{"title":"Iterative Tensor Receiver for MIMO-GFDM systems","authors":"D. Rakhimov, Sai Pavan Deram, Bruno Sokal, Kristina Naskovska, A. D. Almeida, M. Haardt","doi":"10.1109/SAM48682.2020.9104330","DOIUrl":null,"url":null,"abstract":"In this paper, we present a tensor MIMO-GFDM system model that is based on the double contraction operator. Based on the derived system model, we propose an iterative tensor based MIMOGFDM receiver, that is initialized with the channel estimation obtained via pilots transmitted in the first data frame. The proposed algorithm exploits the tensor structure by using several unfoldings of the received signal sequentially to obtain estimates of the transmitted symbols and the channel. Simulation results show the tensor gain for the proposed algorithm in addition to the improved channel estimation. Numerical results confirm that the receiver requires the same amount of pilots as the Zero Forcing (ZF) receiver, while having a better symbol error rate (SER) performance and a better channel estimation accuracy.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"5 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a tensor MIMO-GFDM system model that is based on the double contraction operator. Based on the derived system model, we propose an iterative tensor based MIMOGFDM receiver, that is initialized with the channel estimation obtained via pilots transmitted in the first data frame. The proposed algorithm exploits the tensor structure by using several unfoldings of the received signal sequentially to obtain estimates of the transmitted symbols and the channel. Simulation results show the tensor gain for the proposed algorithm in addition to the improved channel estimation. Numerical results confirm that the receiver requires the same amount of pilots as the Zero Forcing (ZF) receiver, while having a better symbol error rate (SER) performance and a better channel estimation accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MIMO-GFDM系统的迭代张量接收机
本文提出了一种基于双收缩算子的张量MIMO-GFDM系统模型。基于导出的系统模型,我们提出了一种基于迭代张量的MIMOGFDM接收机,该接收机使用第一数据帧中传输的导频获得的信道估计进行初始化。该算法利用张量结构,对接收信号依次进行多次展开,得到发射信号和信道的估计。仿真结果表明,该算法具有较好的张量增益和较好的信道估计性能。数值结果表明,该接收机需要与零强迫(ZF)接收机相同数量的导频,同时具有更好的符号误差率(SER)性能和更好的信道估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1