F. Haq, S. Saleem, M. Imran, A. Ghazal, Kashif Ahmad, Muhammad Roman, S. Rahman, Samin Ullah, Iftekhar Ahmad, Habibah Mehmood, Wajahat Ullah
{"title":"Phylogenetic analyses and genomic variation of the 2019-nCoV","authors":"F. Haq, S. Saleem, M. Imran, A. Ghazal, Kashif Ahmad, Muhammad Roman, S. Rahman, Samin Ullah, Iftekhar Ahmad, Habibah Mehmood, Wajahat Ullah","doi":"10.25082/JPBR.2020.01.004","DOIUrl":null,"url":null,"abstract":"There is a rising global concern about the SARS CoV-2 as a public health threat. Complete genome sequence have been released by the worldwide scientific community for understanding the molecular characteristics and evolutionary origin of this virus. Aim of the current context is to present phylogenetic relationship and genomic variation of 2019-nCoV. Based on availability of genomic information, we constructed a phylogenetic tree including also representatives of other coronaviridae, such as Middle East respiratory syndrome, severe acute respiratory syndrome and Bat coronavirus. The phylogenetic tree analysis suggested that SARS CoV-2 significantly clustered with bat SARS like coronavirus genome, however structural analysis revealed mutation in Spike Glycoprotein and nucleocapsid protein. However our phylogenetic and genomic analysis suggests that bats can be the reservoir for this virus. Lack of forest might be the fact in association of bats with human environment. It is also difficult to study on bats due to absence of proper reagent and availability of few species for research. We confirm high sequence similarity (>99%) among sequenced SARS CoV-2 genomes, and 96% genome identity with the bat coronavirus, confirming the notion of a zoonotic origin of SARS CoV-2.","PeriodicalId":16703,"journal":{"name":"Journal of Pharmaceutical and Biopharmaceutical Research","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical and Biopharmaceutical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25082/JPBR.2020.01.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
There is a rising global concern about the SARS CoV-2 as a public health threat. Complete genome sequence have been released by the worldwide scientific community for understanding the molecular characteristics and evolutionary origin of this virus. Aim of the current context is to present phylogenetic relationship and genomic variation of 2019-nCoV. Based on availability of genomic information, we constructed a phylogenetic tree including also representatives of other coronaviridae, such as Middle East respiratory syndrome, severe acute respiratory syndrome and Bat coronavirus. The phylogenetic tree analysis suggested that SARS CoV-2 significantly clustered with bat SARS like coronavirus genome, however structural analysis revealed mutation in Spike Glycoprotein and nucleocapsid protein. However our phylogenetic and genomic analysis suggests that bats can be the reservoir for this virus. Lack of forest might be the fact in association of bats with human environment. It is also difficult to study on bats due to absence of proper reagent and availability of few species for research. We confirm high sequence similarity (>99%) among sequenced SARS CoV-2 genomes, and 96% genome identity with the bat coronavirus, confirming the notion of a zoonotic origin of SARS CoV-2.