New horizons: explosive detection in soil extracts with a fiber-optic biosensor.

L. Shriver-Lake, C. H. Patterson, Saskia K. van Bergen
{"title":"New horizons: explosive detection in soil extracts with a fiber-optic biosensor.","authors":"L. Shriver-Lake, C. H. Patterson, Saskia K. van Bergen","doi":"10.1002/1520-6521(2000)4:5<239::AID-FACT3>3.0.CO;2-Z","DOIUrl":null,"url":null,"abstract":"Contamination of soils with the explosives TNT and RDX is a worldwide problem that has resulted from inadequate disposal methods. Many of these contamination sites are currently being characterized or are undergoing remediation. The ability to obtain real-time, on-site results would save remediation time, reduce cost, and provide for efficient use of labor during cleanup. The NRL fiber-optic biosensor, which has been demonstrated for the on-site detection of explosives in ground water, has expanded its horizons to include detection in soil extracts. Soil samples from several sites in the United States were analyzed for TNT and RDX. The explosives were removed from the soil with a 3-min acetone extraction. The extract was mixed with buffer containing a fluorescent explosive analog and exposed to the antibody-coated optical probes. In the presence of either TNT or RDX, a decrease in the fluorescence signal, proportional to the explosive concentration, was observed. In less than 20 min, analysis on four optical probes was completed. Extract results from the fiber-optic biosensor were compared to those from U.S. EPA SW 846 Method 8330 (reverse-phase high-performance chromatography). Detection limits of 0.5 mg/kg (0.1 mg/l) of TNT and RDX in soil acetone extracts were obtained. © 2000 John Wiley & Sons, Inc.* Field Analyt Chem Technol 4: 239–245, 2000","PeriodicalId":12132,"journal":{"name":"Field Analytical Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Analytical Chemistry and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1520-6521(2000)4:5<239::AID-FACT3>3.0.CO;2-Z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Contamination of soils with the explosives TNT and RDX is a worldwide problem that has resulted from inadequate disposal methods. Many of these contamination sites are currently being characterized or are undergoing remediation. The ability to obtain real-time, on-site results would save remediation time, reduce cost, and provide for efficient use of labor during cleanup. The NRL fiber-optic biosensor, which has been demonstrated for the on-site detection of explosives in ground water, has expanded its horizons to include detection in soil extracts. Soil samples from several sites in the United States were analyzed for TNT and RDX. The explosives were removed from the soil with a 3-min acetone extraction. The extract was mixed with buffer containing a fluorescent explosive analog and exposed to the antibody-coated optical probes. In the presence of either TNT or RDX, a decrease in the fluorescence signal, proportional to the explosive concentration, was observed. In less than 20 min, analysis on four optical probes was completed. Extract results from the fiber-optic biosensor were compared to those from U.S. EPA SW 846 Method 8330 (reverse-phase high-performance chromatography). Detection limits of 0.5 mg/kg (0.1 mg/l) of TNT and RDX in soil acetone extracts were obtained. © 2000 John Wiley & Sons, Inc.* Field Analyt Chem Technol 4: 239–245, 2000
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新视野:用光纤生物传感器检测土壤提取物中的爆炸物。
TNT和RDX炸药对土壤的污染是一个世界性的问题,这是由于处置方法不当造成的。许多这些污染地点目前正在进行鉴定或正在进行补救。获得实时的现场结果的能力将节省修复时间,降低成本,并在清理过程中提供有效的劳动力使用。NRL的光纤生物传感器已经被证明可以现场检测地下水中的爆炸物,现在它的探测范围已经扩展到土壤提取物中。对美国几个地点的土壤样本进行了TNT和RDX分析。炸药通过丙酮萃取3分钟从土壤中取出。提取液与含有荧光炸药类似物的缓冲液混合,并暴露于抗体包被的光学探针中。在TNT或RDX存在的情况下,观察到荧光信号的减少与炸药浓度成正比。在不到20分钟的时间内,完成了对四个光学探针的分析。将光纤生物传感器的提取结果与美国EPA SW 846方法8330(反相高效色谱法)的提取结果进行比较。得到了土壤丙酮提取物中TNT和RDX的检出限为0.5 mg/kg (0.1 mg/l)。©2000 John Wiley & Sons, Inc.* Field analyst Chem technology 4: 239 - 245,2000
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development and evaluation of a low thermal mass gas chromatograph for rapid forensic GC–MS analyses Field detection and identification of a bioaerosol suite by pyrolysis-gas chromatography-ion mobility spectrometry* Multivariate data analysis of fluorescence signals from biological aerosols Biological agent detection and identification by the Block II Chemical Biological Mass Spectrometer Rapid determination of bacteria in drinking water using an ATP assay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1