Stress Classification Using K-means Clustering and Heart Rate Variability from Electrocardiogram

Mingu Kang, Siho Shin, Jaehyo Jung, Y. Kim
{"title":"Stress Classification Using K-means Clustering and Heart Rate Variability from Electrocardiogram","authors":"Mingu Kang, Siho Shin, Jaehyo Jung, Y. Kim","doi":"10.46300/91011.2020.14.32","DOIUrl":null,"url":null,"abstract":"In this study, we propose a method to classify individuals under stress and those without stress using k-means clustering. After extracting the R and S peak values from the ECG signal, the heart rate variability is extracted using a fast Fourier transform. Then, a criterion for classifying the ECG signal for the stress state is set, and the stress state is classified through k-means clustering. In addition, the stress level is indicated using the R − Speak value. This method is expected to be applied to the U-healthcare field to help manage the mental health of people suffering from stress. Keywords— K-means Clustering, Electrocardiogram (ECG), Heart Rate Variability (HRV), Fast Fourier Transform (FFT)","PeriodicalId":13849,"journal":{"name":"International Journal of Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/91011.2020.14.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, we propose a method to classify individuals under stress and those without stress using k-means clustering. After extracting the R and S peak values from the ECG signal, the heart rate variability is extracted using a fast Fourier transform. Then, a criterion for classifying the ECG signal for the stress state is set, and the stress state is classified through k-means clustering. In addition, the stress level is indicated using the R − Speak value. This method is expected to be applied to the U-healthcare field to help manage the mental health of people suffering from stress. Keywords— K-means Clustering, Electrocardiogram (ECG), Heart Rate Variability (HRV), Fast Fourier Transform (FFT)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于k均值聚类和心电图心率变异性的压力分类
在本研究中,我们提出了一种基于k-均值聚类的压力个体和无压力个体的分类方法。在提取心电信号的R和S峰值后,利用快速傅里叶变换提取心率变异性。然后,设定心电信号的应激状态分类准则,通过k-均值聚类对应激状态进行分类;另外,用R−Speak值表示应力水平。该方法有望应用于u保健领域,以帮助管理压力患者的心理健康。关键词:k均值聚类,心电图,心率变异性,快速傅里叶变换(FFT)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antibiotic Resistance Mechanisms and Strategies for Combating Resistance in Germany Role of Non-Coding RNAs in Gene Regulation in Brazil Influence of Environmental Factors on Embryonic Development and Fetal Programming in South Africa Stress Factors Affecting the Cryopreservation of Biological Components of Seed Virus for Avian Influenza Vaccine Production Capability of Workers of the Ant Myrmica sabuleti to Categorize Numbers of Elements into Even and Odd
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1