From Chest X-Rays to Radiology Reports: A Multimodal Machine Learning Approach

Sonit Singh, Sarvnaz Karimi, K. Ho-Shon, Len Hamey
{"title":"From Chest X-Rays to Radiology Reports: A Multimodal Machine Learning Approach","authors":"Sonit Singh, Sarvnaz Karimi, K. Ho-Shon, Len Hamey","doi":"10.1109/DICTA47822.2019.8945819","DOIUrl":null,"url":null,"abstract":"Interpreting medical images and summarising them in the form of radiology reports is a challenging, tedious, and complex task. A radiologist provides a complete description of a medical image in the form of radiology report by describing normal or abnormal findings and providing a summary for decision making. Research shows that the radiology practice is error-prone due to the limited number of experts, increasing patient volumes, and the subjective nature of human perception. To reduce the number of diagnostic errors and to alleviate the task of radiologists, there is a need for a computer-aided report generation system that can automatically generate a radiology report for a given medical image. We propose an encoder-decoder based framework that can automatically generate radiology reports from medical images. Specifically, we use a Convolutional Neural Network as an encoder coupled with a multi-stage Stacked Long Short-Term Memory as a decoder to generate reports. We perform experiments on the Indiana University Chest X-ray collection, a publicly available dataset, to measure the effectiveness of our model. Experimental results show the effectiveness of our model in automatically generating radiology reports from medical images.","PeriodicalId":6696,"journal":{"name":"2019 Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA47822.2019.8945819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Interpreting medical images and summarising them in the form of radiology reports is a challenging, tedious, and complex task. A radiologist provides a complete description of a medical image in the form of radiology report by describing normal or abnormal findings and providing a summary for decision making. Research shows that the radiology practice is error-prone due to the limited number of experts, increasing patient volumes, and the subjective nature of human perception. To reduce the number of diagnostic errors and to alleviate the task of radiologists, there is a need for a computer-aided report generation system that can automatically generate a radiology report for a given medical image. We propose an encoder-decoder based framework that can automatically generate radiology reports from medical images. Specifically, we use a Convolutional Neural Network as an encoder coupled with a multi-stage Stacked Long Short-Term Memory as a decoder to generate reports. We perform experiments on the Indiana University Chest X-ray collection, a publicly available dataset, to measure the effectiveness of our model. Experimental results show the effectiveness of our model in automatically generating radiology reports from medical images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从胸部x光到放射学报告:一种多模式机器学习方法
解释医学图像并以放射学报告的形式总结它们是一项具有挑战性、乏味和复杂的任务。放射科医生通过描述正常或异常的发现,并为决策提供总结,以放射学报告的形式提供对医学图像的完整描述。研究表明,由于专家数量有限,患者数量增加以及人类感知的主观性,放射学实践容易出错。为了减少诊断错误的数量并减轻放射科医生的工作,需要一种计算机辅助报告生成系统,该系统可以为给定的医学图像自动生成放射学报告。我们提出了一个基于编码器-解码器的框架,可以从医学图像中自动生成放射学报告。具体来说,我们使用卷积神经网络作为编码器,加上多级堆叠长短期记忆作为解码器来生成报告。我们在印第安纳大学的胸部x光数据集(一个公开可用的数据集)上进行实验,以衡量我们模型的有效性。实验结果表明,该模型能够有效地从医学图像中自动生成放射学报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Micro Target Detection through Local Motion Feedback in Biologically Inspired Algorithms Hyperspectral Image Analysis for Writer Identification using Deep Learning Robust Image Watermarking Framework Powered by Convolutional Encoder-Decoder Network Single View 3D Point Cloud Reconstruction using Novel View Synthesis and Self-Supervised Depth Estimation Semantic Segmentation under Severe Imaging Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1