G.B. Masten, I.N. Djachiachvili, D. B. Morris, J. Gahl
{"title":"Operating characteristics of a high-current demountable Cs-Ba tacitron","authors":"G.B. Masten, I.N. Djachiachvili, D. B. Morris, J. Gahl","doi":"10.1109/PPC.1995.596520","DOIUrl":null,"url":null,"abstract":"Tacitrons are triode gas-discharge tubes, similar in construction to thyratrons. The primary functional difference between a tacitron and a thyratron is that the tacitron is designed to be completely grid-controlled, whereas a thyratron has grid control only over ignition. Demountable cesium-barium (Cs-Ba) tacitrons have exhibited very low forward voltage drops in the range of a few volts, hold-off voltages greater than 200 V, and average conduction current densities greater than 10 A/cm/sup 2/. These characteristics yield an average power switching density in the order of 10/sup 3/ W/cm/sup 2/ approaching 95% peak switching efficiency. This parameter regime places the Cs-Ba tacitron in the range of conventional solid-state devices, with the advantage that the tacitron should reliably operate in extremes of temperature and radiation. The high-current tacitron has been designed to modulate average currents in the range of 100 to 200 A, with the intent of demonstrating continuous power conditioning capability in the kilowatt range.","PeriodicalId":11163,"journal":{"name":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.1995.596520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Tacitrons are triode gas-discharge tubes, similar in construction to thyratrons. The primary functional difference between a tacitron and a thyratron is that the tacitron is designed to be completely grid-controlled, whereas a thyratron has grid control only over ignition. Demountable cesium-barium (Cs-Ba) tacitrons have exhibited very low forward voltage drops in the range of a few volts, hold-off voltages greater than 200 V, and average conduction current densities greater than 10 A/cm/sup 2/. These characteristics yield an average power switching density in the order of 10/sup 3/ W/cm/sup 2/ approaching 95% peak switching efficiency. This parameter regime places the Cs-Ba tacitron in the range of conventional solid-state devices, with the advantage that the tacitron should reliably operate in extremes of temperature and radiation. The high-current tacitron has been designed to modulate average currents in the range of 100 to 200 A, with the intent of demonstrating continuous power conditioning capability in the kilowatt range.