Workload-Aware Query Recommendation Using Deep Learning

E. Y. Lai, Zainab Zolaktaf, Mostafa Milani, Omar AlOmeir, Jianhao Cao, R. Pottinger
{"title":"Workload-Aware Query Recommendation Using Deep Learning","authors":"E. Y. Lai, Zainab Zolaktaf, Mostafa Milani, Omar AlOmeir, Jianhao Cao, R. Pottinger","doi":"10.48786/edbt.2023.05","DOIUrl":null,"url":null,"abstract":"Users interact with databases by writing sequences of SQL queries that are are often stored in query workloads. Current SQL query recommendation approaches make little use of query workloads. Our work presents a novel workload-aware approach to query recommendation. We use deep learning prediction models trained on query pairs extracted from large-scale query workloads to build our approach. Our algorithms suggest contextual (query fragments) and structural (query templates) information to aid users in formulating their next query. We evaluate our algorithms on two real-world datasets: the Sloan Digital Sky Survey (SDSS) and SQLShare. We perform a thorough analysis of the workloads and then empirically show that our workload-aware, deep-learning approach vastly outperforms known collaborative filtering approaches.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"23 1","pages":"53-65"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2023.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Users interact with databases by writing sequences of SQL queries that are are often stored in query workloads. Current SQL query recommendation approaches make little use of query workloads. Our work presents a novel workload-aware approach to query recommendation. We use deep learning prediction models trained on query pairs extracted from large-scale query workloads to build our approach. Our algorithms suggest contextual (query fragments) and structural (query templates) information to aid users in formulating their next query. We evaluate our algorithms on two real-world datasets: the Sloan Digital Sky Survey (SDSS) and SQLShare. We perform a thorough analysis of the workloads and then empirically show that our workload-aware, deep-learning approach vastly outperforms known collaborative filtering approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的工作负载感知查询推荐
用户通过编写通常存储在查询工作负载中的SQL查询序列与数据库进行交互。当前的SQL查询推荐方法很少使用查询工作负载。我们的工作提出了一种新颖的工作负载感知查询推荐方法。我们使用从大规模查询工作负载中提取的查询对训练的深度学习预测模型来构建我们的方法。我们的算法建议上下文(查询片段)和结构(查询模板)信息,以帮助用户制定下一个查询。我们在两个真实世界的数据集上评估了我们的算法:斯隆数字巡天(SDSS)和SQLShare。我们对工作负载进行了彻底的分析,然后通过经验表明,我们的工作负载感知、深度学习方法大大优于已知的协同过滤方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing Generic Abstractions from Application Datasets Fair Spatial Indexing: A paradigm for Group Spatial Fairness. Data Coverage for Detecting Representation Bias in Image Datasets: A Crowdsourcing Approach Auditing for Spatial Fairness TransEdge: Supporting Efficient Read Queries Across Untrusted Edge Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1