Direct Dual Energy CT Material Decomposition Using Noise2Noise Prior

Wei Fang, Dufan Wu, Kyungsang Kim, Ramandeep Singh, M. Kalra, Liang Li, Quanzheng Li
{"title":"Direct Dual Energy CT Material Decomposition Using Noise2Noise Prior","authors":"Wei Fang, Dufan Wu, Kyungsang Kim, Ramandeep Singh, M. Kalra, Liang Li, Quanzheng Li","doi":"10.1109/NSS/MIC42677.2020.9508021","DOIUrl":null,"url":null,"abstract":"Dual energy computed tomography (DECT) can provide material decomposition capability, which can be useful for many clinical diagnosis applications. But the decomposed images can be very noisy due to the dose limit in the scanning and the ill-condition of decomposition process. Recently Noise2Noise framework shows its potential on restoring images by using only noisy data. Inspired by this, we proposed an iterative DECT reconstruction algorithm with a Noise2Noise prior. The algorithm directly estimates material images from projection data and thus can significantly reduce possible bias which may occur in other post-smoothen methods. The Noise2Noise prior was built by a deep neural network, which did NOT need external data for training. The data fidelity term and the Noise2Noise network are alternatively optimized respectively using separable quadratic surrogate (SQS) and Adam algorithm. The method was validated both on simulation data and real clinical data. Quantitative analysis demonstrates the method's promising performance on denoising, bias avoiding and detail reservation.","PeriodicalId":6760,"journal":{"name":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"22 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS/MIC42677.2020.9508021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dual energy computed tomography (DECT) can provide material decomposition capability, which can be useful for many clinical diagnosis applications. But the decomposed images can be very noisy due to the dose limit in the scanning and the ill-condition of decomposition process. Recently Noise2Noise framework shows its potential on restoring images by using only noisy data. Inspired by this, we proposed an iterative DECT reconstruction algorithm with a Noise2Noise prior. The algorithm directly estimates material images from projection data and thus can significantly reduce possible bias which may occur in other post-smoothen methods. The Noise2Noise prior was built by a deep neural network, which did NOT need external data for training. The data fidelity term and the Noise2Noise network are alternatively optimized respectively using separable quadratic surrogate (SQS) and Adam algorithm. The method was validated both on simulation data and real clinical data. Quantitative analysis demonstrates the method's promising performance on denoising, bias avoiding and detail reservation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Noise2Noise先验的直接双能量CT材料分解
双能量计算机断层扫描(DECT)可以提供物质分解能力,这在许多临床诊断应用中是有用的。但由于扫描时的剂量限制和分解过程的不良条件,分解后的图像会产生很大的噪声。最近Noise2Noise框架显示了它在仅使用噪声数据恢复图像方面的潜力。受此启发,我们提出了一种基于Noise2Noise先验的迭代DECT重构算法。该算法直接从投影数据中估计材料图像,因此可以显著减少其他后平滑方法中可能出现的偏差。Noise2Noise先验是由一个深度神经网络建立的,它不需要外部数据进行训练。数据保真度项和Noise2Noise网络分别使用可分离二次代理(SQS)和Adam算法进行交替优化。仿真数据和实际临床数据验证了该方法的有效性。定量分析表明,该方法在去噪、避免偏置和细节保留等方面具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance of Dual-Ended Readout PET Detectors Based on SiPMs with Different Microcell Sizes Neural Network-based Inter-crystal Scatter Event Positioning in a PET System Design Based on 3D Position Sensitive Detectors An e-LINAC driven PGNAA system for concealed drug inspection Design of a Multi-Technology Pre-Clinical SPECT System Comprehensive Simulation and Design of 3D Silicon Sensors for Enhanced Timing Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1