Anisotropic Spectral Manifold Wavelet Descriptor for Deformable Shape Analysis and Matching

Qinsong Li, Shengjun Liu, Ling Hu, Xinru Liu
{"title":"Anisotropic Spectral Manifold Wavelet Descriptor for Deformable Shape Analysis and Matching","authors":"Qinsong Li, Shengjun Liu, Ling Hu, Xinru Liu","doi":"10.2312/PG.20181276","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel framework termed Anisotropic Spectral Manifold Wavelet Transform (ASMWT) for shape analysis. ASMWT comprehensively analyzes the signals from multiple directions on local manifold regions of the shape with a series of low-pass and band-pass frequency filters in each direction. Using the ASMWT coefficients of a very simple function, we efficiently construct a localizable and discriminative multiscale point descriptor, named as the Anisotropic Spectral Manifold Wavelet Descriptor (ASMWD). Since the filters used in our descriptor are direction-sensitive and able to robustly reconstruct the signals with a finite number of scales, it makes our descriptor be intrinsic-symmetry unambiguous, compact as well as efficient. The extensive experimental results demonstrate that our method achieves significant performance than several state-of-the-art methods when applied in vertex-wise shape matching.","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"3 1","pages":"41-44"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PG.20181276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a novel framework termed Anisotropic Spectral Manifold Wavelet Transform (ASMWT) for shape analysis. ASMWT comprehensively analyzes the signals from multiple directions on local manifold regions of the shape with a series of low-pass and band-pass frequency filters in each direction. Using the ASMWT coefficients of a very simple function, we efficiently construct a localizable and discriminative multiscale point descriptor, named as the Anisotropic Spectral Manifold Wavelet Descriptor (ASMWD). Since the filters used in our descriptor are direction-sensitive and able to robustly reconstruct the signals with a finite number of scales, it makes our descriptor be intrinsic-symmetry unambiguous, compact as well as efficient. The extensive experimental results demonstrate that our method achieves significant performance than several state-of-the-art methods when applied in vertex-wise shape matching.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可变形形状分析与匹配的各向异性谱流形小波描述子
在本文中,我们提出了一种新的框架,称为各向异性谱流形小波变换(ASMWT)。ASMWT在形状的局部流形区域上综合分析来自多个方向的信号,在每个方向上使用一系列低通和带通频率滤波器。利用一个非常简单的函数的ASMWT系数,我们有效地构造了一个可定位、可判别的多尺度点描述子,称为各向异性谱流形小波描述子(ASMWD)。由于我们的描述符中使用的滤波器是方向敏感的,并且能够在有限数量的尺度下鲁棒地重建信号,这使得我们的描述符具有本征对称性,明确,紧凑和高效。大量的实验结果表明,当应用于逐点形状匹配时,我们的方法比几种最先进的方法取得了显着的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud-Assisted Hybrid Rendering for Thin-Client Games and VR Applications Interactive Deformable Image Registration with Dual Cursor DFGA: Digital Human Faces Generation and Animation from the RGB Video using Modern Deep Learning Technology Aesthetic Enhancement via Color Area and Location Awareness Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1