Gaussian Process Regression for Geometry Optimization

A. Denzel, J. Kastner
{"title":"Gaussian Process Regression for Geometry Optimization","authors":"A. Denzel, J. Kastner","doi":"10.1063/1.5017103","DOIUrl":null,"url":null,"abstract":"We implemented a geometry optimizer based on Gaussian process regression (GPR) to find minimum structures on potential energy surfaces. We tested both a two times differentiable form of the Matern kernel and the squared exponential kernel. The Matern kernel performs much better. We give a detailed description of the optimization procedures. These include overshooting the step resulting from GPR in order to obtain a higher degree of interpolation vs. extrapolation. In a benchmark against the L-BFGS optimizer of the DL-FIND library on 26 test systems, we found the new optimizer to generally reduce the number of required optimization steps.","PeriodicalId":8439,"journal":{"name":"arXiv: Chemical Physics","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5017103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

Abstract

We implemented a geometry optimizer based on Gaussian process regression (GPR) to find minimum structures on potential energy surfaces. We tested both a two times differentiable form of the Matern kernel and the squared exponential kernel. The Matern kernel performs much better. We give a detailed description of the optimization procedures. These include overshooting the step resulting from GPR in order to obtain a higher degree of interpolation vs. extrapolation. In a benchmark against the L-BFGS optimizer of the DL-FIND library on 26 test systems, we found the new optimizer to generally reduce the number of required optimization steps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
几何优化的高斯过程回归
我们实现了一个基于高斯过程回归(GPR)的几何优化器来寻找势能表面上的最小结构。我们测试了母核的二次可微形式和指数核的平方。Matern内核的性能要好得多。我们给出了优化过程的详细描述。这些包括为了获得更高程度的内插与外推而由GPR产生的超调步长。在针对DL-FIND库的L-BFGS优化器在26个测试系统上的基准测试中,我们发现新的优化器通常可以减少所需的优化步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flexible model of water based on the dielectric and electromagnetic spectrum properties : TIP4P/$\epsilon$ Flex. Characterization of a Modular Flow Cell System for Electrocatalytic Experiments and Comparison to a Commercial RRDE System Predicting Gas-Particle Partitioning Coefficients of Atmospheric Molecules with Machine Learning Electron-stimulated desorption from molecular ices in the 0.15–2 keV regime (15‐crown‐5)BiI 3 as a Building Block for Halogen Bonded Supramolecular Aggregates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1