A Blind Direction of Arrival and Mutual Coupling Estimation Scheme for Nested Array

Jinqing Shen, Jianfeng Li, Beizuo Zhu, Changbo Ye
{"title":"A Blind Direction of Arrival and Mutual Coupling Estimation Scheme for Nested Array","authors":"Jinqing Shen, Jianfeng Li, Beizuo Zhu, Changbo Ye","doi":"10.1109/SAM48682.2020.9104291","DOIUrl":null,"url":null,"abstract":"Generally, nested array (NA) is susceptible to mutual coupling due to the dense subarray, which seriously degrades the performance. To address this issue, we design an array switching-based scheme to achieve the blind direction of arrival (DOA) and mutual coupling estimation in this paper. Specifically, by exploiting the inherent sparse structural characteristics of NA, we first switch the sparse subarray on to perform initial DOA estimation, which enables to offer the well-performed estimates free from the severe mutual coupling effect. Subsequently, the unambiguous angles are determined with low complexity by utilizing the received signal of the whole NA. Furthermore, the contaminated steering vector is reconstructed and a quadratic optimization problem is established to estimate the mutual coupling coefficients. Finally, re-estimation is conducted to obtain the refined estimates. Numerical simulations demonstrate the superiority of the proposed scheme.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"19 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Generally, nested array (NA) is susceptible to mutual coupling due to the dense subarray, which seriously degrades the performance. To address this issue, we design an array switching-based scheme to achieve the blind direction of arrival (DOA) and mutual coupling estimation in this paper. Specifically, by exploiting the inherent sparse structural characteristics of NA, we first switch the sparse subarray on to perform initial DOA estimation, which enables to offer the well-performed estimates free from the severe mutual coupling effect. Subsequently, the unambiguous angles are determined with low complexity by utilizing the received signal of the whole NA. Furthermore, the contaminated steering vector is reconstructed and a quadratic optimization problem is established to estimate the mutual coupling coefficients. Finally, re-estimation is conducted to obtain the refined estimates. Numerical simulations demonstrate the superiority of the proposed scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种嵌套阵列的盲到达方向和互耦估计方法
嵌套阵列由于子阵列密集,容易发生相互耦合,严重影响性能。为了解决这一问题,本文设计了一种基于阵列交换的方案来实现盲到达方向和互耦估计。具体而言,我们利用NA固有的稀疏结构特征,首先打开稀疏子阵列进行初始DOA估计,这样可以在不受严重互耦合影响的情况下提供性能良好的估计。然后利用整个NA的接收信号,以较低的复杂度确定无二义角。在此基础上,重构了受污染的转向矢量,建立了二次优化问题来估计相互耦合系数。最后进行重新估计,得到精细化估计。数值模拟结果表明了该方案的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1