Florence Leong, A. Mohammadi, Ying Tan, Denny Thiruchelvam, Pietro Valdastri, D. Oetomo
{"title":"Magnetic interactions of neighbouring stator sets in multi DOF local electromagnetic actuation for robotic abdominal surgery","authors":"Florence Leong, A. Mohammadi, Ying Tan, Denny Thiruchelvam, Pietro Valdastri, D. Oetomo","doi":"10.1109/IROS.2017.8206463","DOIUrl":null,"url":null,"abstract":"This paper aims to characterise the magnetic interaction in neighbouring sets of local electromagnetic actuation (LEMA) actuators in a robotic platform for abdominal surgery. The analysis looks into the affect of the magnetic fields contributed by a stator-rotor set (the actuation unit) located adjacent to the rotor of interest. Each rotor drives one of the degree-of-freedoms (DOFs) on a surgical robotic device. In this study, a two-DOF setup is used for the magnetic interaction analysis, which can be expanded to general case n-DOF setup with the Principle of Superposition of magnetic fields from multiple sources. The magnetic model is then used to compute the dynamics of the system, which involves the equation of motion of the rotors and associated robotic mechanism it drives, and the actuator (electrical) model that takes into account the back EMF generated by the permanent magnet rotors. The magnetic field effect of the neighbouring set onto the rotor is observed by obtaining the speed response of the rotor through simulation so that the dynamic model can be validated against the experimental results. The outcomes are useful for the design specification of the LEMA system configuration, involving the feasible / pragmatic distance between the stator sets such that the interference is minimised, and for the design of the necessary control strategy.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"28 1","pages":"5723-5729"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper aims to characterise the magnetic interaction in neighbouring sets of local electromagnetic actuation (LEMA) actuators in a robotic platform for abdominal surgery. The analysis looks into the affect of the magnetic fields contributed by a stator-rotor set (the actuation unit) located adjacent to the rotor of interest. Each rotor drives one of the degree-of-freedoms (DOFs) on a surgical robotic device. In this study, a two-DOF setup is used for the magnetic interaction analysis, which can be expanded to general case n-DOF setup with the Principle of Superposition of magnetic fields from multiple sources. The magnetic model is then used to compute the dynamics of the system, which involves the equation of motion of the rotors and associated robotic mechanism it drives, and the actuator (electrical) model that takes into account the back EMF generated by the permanent magnet rotors. The magnetic field effect of the neighbouring set onto the rotor is observed by obtaining the speed response of the rotor through simulation so that the dynamic model can be validated against the experimental results. The outcomes are useful for the design specification of the LEMA system configuration, involving the feasible / pragmatic distance between the stator sets such that the interference is minimised, and for the design of the necessary control strategy.