Whole yeast model: what and why

P. Palumbo, M. Vanoni, F. Papa, S. Busti, L. Alberghina
{"title":"Whole yeast model: what and why","authors":"P. Palumbo, M. Vanoni, F. Papa, S. Busti, L. Alberghina","doi":"10.7287/peerj.preprints.27327v1","DOIUrl":null,"url":null,"abstract":"One of the most challenging fields in Life Science research is to deeply understand how complex cellular functions arise from the interactions of molecules in living cells. Mathematical and computational methods in Systems Biology are fundamental to study the complex molecular interactions within biological systems and to accelerate discoveries. Within this framework, a need exists to integrate different mathematical tools in order to develop quantitative models of entire organisms, i.e. whole-cell models. This note presents a first attempt to show the feasibility of such a task for the budding yeast Saccharomyces cerevisiae, a model organism for eukaryotic cells: the proposed model refers to the main cellular activities like metabolism, growth and cycle in a modular fashion, therefore allowing to treat them separately as single input/output modules, as well as to interconnect them in order to build the backbone of a coarse-grain whole cell model. The model modularity allows to substitute a low granularity module with one with a finer grain, whenever molecular details are required to correctly reproduce specific experiments. Furthermore, by properly setting the cellular division, simulations of cell populations are achieved, able to deal with protein distributions. Whole cell modeling will help understanding logic of cell resilience.","PeriodicalId":93040,"journal":{"name":"PeerJ preprints","volume":"59 1","pages":"e27327"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ preprints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7287/peerj.preprints.27327v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most challenging fields in Life Science research is to deeply understand how complex cellular functions arise from the interactions of molecules in living cells. Mathematical and computational methods in Systems Biology are fundamental to study the complex molecular interactions within biological systems and to accelerate discoveries. Within this framework, a need exists to integrate different mathematical tools in order to develop quantitative models of entire organisms, i.e. whole-cell models. This note presents a first attempt to show the feasibility of such a task for the budding yeast Saccharomyces cerevisiae, a model organism for eukaryotic cells: the proposed model refers to the main cellular activities like metabolism, growth and cycle in a modular fashion, therefore allowing to treat them separately as single input/output modules, as well as to interconnect them in order to build the backbone of a coarse-grain whole cell model. The model modularity allows to substitute a low granularity module with one with a finer grain, whenever molecular details are required to correctly reproduce specific experiments. Furthermore, by properly setting the cellular division, simulations of cell populations are achieved, able to deal with protein distributions. Whole cell modeling will help understanding logic of cell resilience.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全酵母模型:什么和为什么
生命科学研究中最具挑战性的领域之一是深入了解活细胞中分子的相互作用如何产生复杂的细胞功能。系统生物学中的数学和计算方法是研究生物系统内复杂分子相互作用和加速发现的基础。在这个框架内,需要整合不同的数学工具,以便开发整个生物体的定量模型,即全细胞模型。本文首次尝试对真核细胞的模式生物酿酒酵母(Saccharomyces cerevisiae)展示这种任务的可行性:提出的模型指的是以模块化方式进行代谢、生长和循环等主要细胞活动,因此可以将它们单独视为单个输入/输出模块,并将它们相互连接以构建粗粒全细胞模型的主干。当需要正确重现特定实验的分子细节时,模型模块化允许用更细粒度的模块代替低粒度模块。此外,通过适当设置细胞分裂,实现了细胞群体的模拟,能够处理蛋白质分布。全细胞建模将有助于理解细胞弹性的逻辑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for designing compassionate and ethical artificial intelligence and artificial consciousness Time series event correlation with DTW and Hierarchical Clustering methods Securing ad hoc on-demand distance vector routing protocol against the black hole DoS attack in MANETs 12 Grand Challenges in Single-Cell Data Science Mice tracking using the YOLO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1