Solute Softening and Vacancy Generation by Diffusion-Less Dislocation Climb in Magnesium Alloys

P. Yi
{"title":"Solute Softening and Vacancy Generation by Diffusion-Less Dislocation Climb in Magnesium Alloys","authors":"P. Yi","doi":"10.2139/ssrn.3694095","DOIUrl":null,"url":null,"abstract":"Abstract Active room temperature solute induced diffusion-less climb of the edge dislocations in model Mg-Al alloys was observed using molecular dynamics simulations. Dislocations on prismatic and pyramidal I planes climb through the basal plane to overcome solute obstacles. This out-of-plane dislocation motion softens the high resistance pyramidal I glide and significantly reduces the anisotropy of dislocation mobility, and could help improve the ductility of Mg. The flow stress scales linearly with solute concentration, cAl. Dislocations climb predominantly in the negative direction, with climb angle on the order of 0.01cAl, producing very high vacancy concentration on the order of 10−4. This climb behavior was rationalized using an energy analysis by comparing the in-plane and out-of-plane motions between different Mg slip planes. The ease of climb depends on the strength of the solute-dislocation interaction and the compactness of the dislocation core.","PeriodicalId":9858,"journal":{"name":"Chemical Engineering (Engineering) eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering (Engineering) eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3694095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract Active room temperature solute induced diffusion-less climb of the edge dislocations in model Mg-Al alloys was observed using molecular dynamics simulations. Dislocations on prismatic and pyramidal I planes climb through the basal plane to overcome solute obstacles. This out-of-plane dislocation motion softens the high resistance pyramidal I glide and significantly reduces the anisotropy of dislocation mobility, and could help improve the ductility of Mg. The flow stress scales linearly with solute concentration, cAl. Dislocations climb predominantly in the negative direction, with climb angle on the order of 0.01cAl, producing very high vacancy concentration on the order of 10−4. This climb behavior was rationalized using an energy analysis by comparing the in-plane and out-of-plane motions between different Mg slip planes. The ease of climb depends on the strength of the solute-dislocation interaction and the compactness of the dislocation core.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镁合金中无扩散位错爬升的溶质软化和空位生成
摘要:采用分子动力学方法观察了室温溶质诱导的Mg-Al合金边缘位错的无扩散爬升现象。棱柱形和锥体I平面上的位错通过基底平面爬升以克服绝对障碍。这种位错的面外运动软化了高阻力锥体I滑移,显著降低了位错迁移率的各向异性,有助于提高Mg的延性。流动应力与溶质浓度(cAl)呈线性关系,位错以负向爬升为主,爬升角在0.01cAl左右,产生的空位浓度非常高,约为10−4。通过比较不同Mg滑移面之间的面内和面外运动,利用能量分析合理化了这种爬升行为。攀爬的难易程度取决于溶质-位错相互作用的强度和位错核心的致密性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Eutectic Solvent Assisted Facile and Efficient Synthesis of Nitrogen-Doped Magnetic Biochar for Hexavalent Chromium Elimination: Mechanism and Performance Insights Computational Simulation of Ionization Processes in Single-Bubble and Multi-Bubble Sonoluminescence Microbubbles for Effective Cleaning of Metal Surfaces Without Chemical Agents Unprecedented Age-Hardening and its Structural Requirement in a Severely Deformed Al-Cu-Mg Alloy Elucidating the Interaction of Enantiomeric Cu(Ii) Complexes with DNA, Rna and Hsa: A Comparative Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1