Nanoparticle shape effects on hydromagnetic flow of Cu‐water nanofluid over a nonlinear stretching sheet in a porous medium with heat source, thermal radiation, and Joule heating

IF 2.3 4区 工程技术 Q1 MATHEMATICS, APPLIED Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik Pub Date : 2023-08-28 DOI:10.1002/zamm.202300188
C. M. Mohana, B. R. Kumar
{"title":"Nanoparticle shape effects on hydromagnetic flow of Cu‐water nanofluid over a nonlinear stretching sheet in a porous medium with heat source, thermal radiation, and Joule heating","authors":"C. M. Mohana, B. R. Kumar","doi":"10.1002/zamm.202300188","DOIUrl":null,"url":null,"abstract":"In this article, the shape effects of copper‐water nanofluid on magnetohydrodynamic boundary layer flow and heat transfer over a nonlinear stretching sheet in a porous medium under the influence of radiation, a heat source, and Joule heating effects are studied. The primary objective of this study is to determine which shape of nanoparticle is most effective in terms of heat transfer rate and to analyze how nanoparticle shape affects it. The governing PDEs are transformed to ODEs through similarity variables, and the numerical solutions are computed with the help of MATLAB's built‐in bvp4c solver. Plots of the velocity and temperature profiles are shown for various key parameters. The stretching parameter decreases both velocity and temperature, whereas the magnetic parameter, porosity, Eckert number, radiation, and heat source escalate temperature profiles. The heat transfer rate of lamina‐shaped nanoparticles is higher than that of other shapes.","PeriodicalId":23924,"journal":{"name":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/zamm.202300188","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, the shape effects of copper‐water nanofluid on magnetohydrodynamic boundary layer flow and heat transfer over a nonlinear stretching sheet in a porous medium under the influence of radiation, a heat source, and Joule heating effects are studied. The primary objective of this study is to determine which shape of nanoparticle is most effective in terms of heat transfer rate and to analyze how nanoparticle shape affects it. The governing PDEs are transformed to ODEs through similarity variables, and the numerical solutions are computed with the help of MATLAB's built‐in bvp4c solver. Plots of the velocity and temperature profiles are shown for various key parameters. The stretching parameter decreases both velocity and temperature, whereas the magnetic parameter, porosity, Eckert number, radiation, and heat source escalate temperature profiles. The heat transfer rate of lamina‐shaped nanoparticles is higher than that of other shapes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在热源、热辐射和焦耳加热条件下,纳米颗粒形状对Cu - water纳米流体在多孔介质中非线性拉伸片上磁流的影响
在本文中,研究了在辐射、热源和焦耳热效应的影响下,铜-水纳米流体的形状对多孔介质中非线性拉伸片的磁流体动力学边界层流动和传热的影响。本研究的主要目的是确定哪种形状的纳米颗粒在传热率方面最有效,并分析纳米颗粒形状如何影响传热率。通过相似变量将控制偏微分方程转换为偏微分方程,并利用MATLAB内置的bvp4c求解器计算数值解。给出了各关键参数的速度和温度分布图。拉伸参数降低了速度和温度,而磁性参数、孔隙度、Eckert数、辐射和热源使温度曲线升高。片状纳米颗粒的传热速率高于其他形状的纳米颗粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
8.70%
发文量
199
审稿时长
3.0 months
期刊介绍: ZAMM is one of the oldest journals in the field of applied mathematics and mechanics and is read by scientists all over the world. The aim and scope of ZAMM is the publication of new results and review articles and information on applied mathematics (mainly numerical mathematics and various applications of analysis, in particular numerical aspects of differential and integral equations), on the entire field of theoretical and applied mechanics (solid mechanics, fluid mechanics, thermodynamics). ZAMM is also open to essential contributions on mathematics in industrial applications.
期刊最新文献
A closed form solution for uniformly loaded rectangular plates with adjacent edges clamped and the two others simply supported (CCSS) Wave analysis in porous thermoelastic plate with microtemperature Transformational deformation models of continuous thin‐walled structural elements with support elements of finite sizes: Theoretical foundations, computational, and physical experiments On the exact controllability of a Galerkin scheme for 3D viscoelastic fluids with fractional Laplacian viscosity and anisotropic filtering An accurate and parameter‐free analysis for the converse Poynting effect in large constrained torsion of highly elastic soft tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1