Thea Prastiwi Soedarmodjo, Fanina Aulia Rachma, H. W. Aparamarta, A. Widjaja
{"title":"Study of UV-B Mutation Effect on pH Resistance and Lipid Production of Microalgae Botryococcus braunii","authors":"Thea Prastiwi Soedarmodjo, Fanina Aulia Rachma, H. W. Aparamarta, A. Widjaja","doi":"10.12962/j20882033.v30i3.5475","DOIUrl":null,"url":null,"abstract":"Microalgae Botryococcus braunii is a potential biodiesel producer as an alternative for fossil fuels due to its high lipid content. UV-B mutations were carried out to see the effect in microalgae growth at various pHs (3-8). Reduction of nitrogen levels was carried out to see the effect on the growth and lipid production of microalgae. UV-B mutation increased the ability of growth and resistance of B. braunii against low pH. Under low nitrogen conditions, the growth of B. braunii cells would not continue for a longer time. B. braunii which grow in nitrogen depletion medium produced lipid content greater than normal nitrogen. UV-B light mutation also increased the lipid content of B. braunii. At 7 days of incubation, the mutation not only increased lipid content, but also significantly increased the TAG content of B. braunii lipids.","PeriodicalId":14549,"journal":{"name":"IPTEK: The Journal for Technology and Science","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPTEK: The Journal for Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12962/j20882033.v30i3.5475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Microalgae Botryococcus braunii is a potential biodiesel producer as an alternative for fossil fuels due to its high lipid content. UV-B mutations were carried out to see the effect in microalgae growth at various pHs (3-8). Reduction of nitrogen levels was carried out to see the effect on the growth and lipid production of microalgae. UV-B mutation increased the ability of growth and resistance of B. braunii against low pH. Under low nitrogen conditions, the growth of B. braunii cells would not continue for a longer time. B. braunii which grow in nitrogen depletion medium produced lipid content greater than normal nitrogen. UV-B light mutation also increased the lipid content of B. braunii. At 7 days of incubation, the mutation not only increased lipid content, but also significantly increased the TAG content of B. braunii lipids.