BAW filter design method based on intrinsically switchable ferroelectric BST FBARs

Seungku Lee, A. Mortazawi
{"title":"BAW filter design method based on intrinsically switchable ferroelectric BST FBARs","authors":"Seungku Lee, A. Mortazawi","doi":"10.1109/MWSYM.2016.7540105","DOIUrl":null,"url":null,"abstract":"A design method for BAW filters based on intrinsically switchable ferroelectric BST FBARs is presented. A complete set of design equations for ladder-type FBAR filters is derived based on the popular filter synthesis method using image parameters. For the first time, a complete analysis is performed that accurately calculates both the image impedance and propagation constant for BAW filters. Closed-form design equations as a function of FBAR and filter specifications are provided. As an experimental verification, a 1.5-stage switchable ferroelectric BST FBAR filter is designed, fabricated, and measured. When a dc bias is applied, a switchable filter is in its on-state and provides an insertion loss of 5.77 dB with a fractional bandwidth of 1.22% at 1.97 GHz. When in its off-state, the filter exhibits more than 22 dB isolation. Circuit-level simulation results are in very good agreement with the measurement results, validating the proposed BAW filter design method.","PeriodicalId":6554,"journal":{"name":"2016 IEEE MTT-S International Microwave Symposium (IMS)","volume":"28 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2016.7540105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

A design method for BAW filters based on intrinsically switchable ferroelectric BST FBARs is presented. A complete set of design equations for ladder-type FBAR filters is derived based on the popular filter synthesis method using image parameters. For the first time, a complete analysis is performed that accurately calculates both the image impedance and propagation constant for BAW filters. Closed-form design equations as a function of FBAR and filter specifications are provided. As an experimental verification, a 1.5-stage switchable ferroelectric BST FBAR filter is designed, fabricated, and measured. When a dc bias is applied, a switchable filter is in its on-state and provides an insertion loss of 5.77 dB with a fractional bandwidth of 1.22% at 1.97 GHz. When in its off-state, the filter exhibits more than 22 dB isolation. Circuit-level simulation results are in very good agreement with the measurement results, validating the proposed BAW filter design method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于本质可切换铁电BST fbar的BAW滤波器设计方法
提出了一种基于本质可切换铁电BST fbar的BAW滤波器设计方法。基于常用的基于图像参数的滤波器合成方法,导出了一套完整的梯形FBAR滤波器设计方程。首次进行了完整的分析,准确地计算了BAW滤波器的图像阻抗和传播常数。给出了与FBAR和滤波器规格有关的闭式设计方程。作为实验验证,设计、制作并测量了1.5级可切换铁电BST FBAR滤波器。当施加直流偏置时,可切换滤波器处于导通状态,在1.97 GHz时提供5.77 dB的插入损耗和1.22%的分数带宽。当处于关闭状态时,滤波器的隔离度超过22 dB。电路级仿真结果与实测结果吻合良好,验证了所提出的BAW滤波器设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel 30–90 GHz singly balanced mixer with broadband LO/IF Dual-band filter design with pole-zero distribution in the complex frequency plane Harmonic-WISP: A passive broadband harmonic RFID platform 10 K room temperature LNA for SKA band 1 An F-Band Reflection Amplifier using 28 nm CMOS FD-SOI Technology for Active Reflectarrays and Spatial Power Combining Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1