{"title":"Design, Development, and Validation of a Whole-Body Vibration Measurement Device","authors":"P. Silva, E. Seabra, J. Mendes","doi":"10.1115/1.4055191","DOIUrl":null,"url":null,"abstract":"\n Measurements of whole-body vibration are fundamental to access and evaluate comfort levels and possible injury development in the human being. International standards such as ISO 2631 and ISO 10326 are dedicated to the measurement and validation of mechanical systems to access vibration levels. Nowadays, the traditional measurement devices require multiple components and so hence become highly bulky, do not allow autonomous data recording, and are expensive. Following the previously mentioned standards, the present research is focused on the design and validation of a new and economic whole-body vibration measurement device. The developed device, besides being capable to measure the whole-body vibration, allows the user to select multiple sample ratings, is capable to record data on a µSD card, is easily moved and adapted, and is autonomous and low cost. This device is composed of three main components: a tri-axial accelerometer, a protective metal case, and semi-rigid rubber disc. Shaker tests were conducted to evaluate the measurement capability of the whole system and the influence of each component on the vibration measurements. This article will introduce the design and development steps for the proposed system. Concerning the validation phase, its results will be discussed and analyzed.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4055191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Measurements of whole-body vibration are fundamental to access and evaluate comfort levels and possible injury development in the human being. International standards such as ISO 2631 and ISO 10326 are dedicated to the measurement and validation of mechanical systems to access vibration levels. Nowadays, the traditional measurement devices require multiple components and so hence become highly bulky, do not allow autonomous data recording, and are expensive. Following the previously mentioned standards, the present research is focused on the design and validation of a new and economic whole-body vibration measurement device. The developed device, besides being capable to measure the whole-body vibration, allows the user to select multiple sample ratings, is capable to record data on a µSD card, is easily moved and adapted, and is autonomous and low cost. This device is composed of three main components: a tri-axial accelerometer, a protective metal case, and semi-rigid rubber disc. Shaker tests were conducted to evaluate the measurement capability of the whole system and the influence of each component on the vibration measurements. This article will introduce the design and development steps for the proposed system. Concerning the validation phase, its results will be discussed and analyzed.