Information Retrieval in Industrial Production Environments

Stefan Windmann, O. Niggemann
{"title":"Information Retrieval in Industrial Production Environments","authors":"Stefan Windmann, O. Niggemann","doi":"10.1109/ETFA.2018.8502506","DOIUrl":null,"url":null,"abstract":"The complexity of industrial production systems is steadily growing. Hence, the plant stuff has to search in an increasing number of documents within the daily work routine, e.g. in manuals, commissioning instructions, service notes, shift books, process data, repair instructions, data sheets, R/I flow charts, CAD drawings etc. To support the plant stuff, an intelligent search engine for industrial production environments is proposed in this paper. Characteristics of the developed search engine with respect to the domain of industrial production environments, e.g. tailored synonym replacements and document classifications, are outlined. Particularly, two methods for document classifications, a k-nearest-neighbor classifier and a Naive Bayes classifier, are evaluated with documents from industrial production environments.","PeriodicalId":6566,"journal":{"name":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"29 1","pages":"1205-1208"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2018.8502506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The complexity of industrial production systems is steadily growing. Hence, the plant stuff has to search in an increasing number of documents within the daily work routine, e.g. in manuals, commissioning instructions, service notes, shift books, process data, repair instructions, data sheets, R/I flow charts, CAD drawings etc. To support the plant stuff, an intelligent search engine for industrial production environments is proposed in this paper. Characteristics of the developed search engine with respect to the domain of industrial production environments, e.g. tailored synonym replacements and document classifications, are outlined. Particularly, two methods for document classifications, a k-nearest-neighbor classifier and a Naive Bayes classifier, are evaluated with documents from industrial production environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业生产环境中的信息检索
工业生产系统的复杂性正在稳步增长。因此,工厂人员必须在日常工作中查找越来越多的文件,例如手册,调试说明,维修说明,班次簿,工艺数据,维修说明,数据表,R/I流程图,CAD图纸等。为了支持工厂资料,本文提出了一种面向工业生产环境的智能搜索引擎。已开发的搜索引擎在工业生产环境领域的特征,例如定制同义词替换和文档分类,被概述。特别地,用工业生产环境中的文档评估了两种文档分类方法,即k近邻分类器和朴素贝叶斯分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scheduling and Situation-Adaptive Operation for Energy Efficiency of Hot Press Forging Factory Application of the Internet of Things (IoT) Technology in Consumer Electronics - Case Study Moving Average control chart for the detection and isolation of temporal faults in stochastic Petri nets A Prototype Implementation of Wi-Fi Seamless Redundancy with Reactive Duplication Avoidance Continuous Maintenance System for Optimal Scheduling Based on Real-Time Machine Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1