Expected-utility-based sensor selection for state estimation

David M. Cohen, Douglas L. Jones, S. Narayanan
{"title":"Expected-utility-based sensor selection for state estimation","authors":"David M. Cohen, Douglas L. Jones, S. Narayanan","doi":"10.1109/ICASSP.2012.6288470","DOIUrl":null,"url":null,"abstract":"Applications such as long-term environmental monitoring and large-scale surveillance demand reliable performance from sensor nodes while operating within strict energy constraints. There is often not enough power for sensors to make measurements all of the time. In these cases, one must decide when to run each sensor. To this end, we develop a one-step optimal sensor-scheduling algorithm based on expected-utility maximization. “Utility” is an application-specific measure of the benefit from a given sensor measurement. In sensing environments that can be modeled using a hidden Markov model, selecting the appropriate combination of sensors at each time instant enables maximization of the expected utility while operating within an energy budget. For some budgets, the utility-based algorithm shows more than 300% utility gains over a constant duty-cycle scheme designed to consume the same amount of energy. These benefits are dependent on the energy budget.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Applications such as long-term environmental monitoring and large-scale surveillance demand reliable performance from sensor nodes while operating within strict energy constraints. There is often not enough power for sensors to make measurements all of the time. In these cases, one must decide when to run each sensor. To this end, we develop a one-step optimal sensor-scheduling algorithm based on expected-utility maximization. “Utility” is an application-specific measure of the benefit from a given sensor measurement. In sensing environments that can be modeled using a hidden Markov model, selecting the appropriate combination of sensors at each time instant enables maximization of the expected utility while operating within an energy budget. For some budgets, the utility-based algorithm shows more than 300% utility gains over a constant duty-cycle scheme designed to consume the same amount of energy. These benefits are dependent on the energy budget.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于期望效用的状态估计传感器选择
长期环境监测和大规模监控等应用要求传感器节点在严格的能量限制下运行时具有可靠的性能。通常没有足够的能量让传感器一直进行测量。在这些情况下,必须决定何时运行每个传感器。为此,我们开发了一种基于期望效用最大化的一步最优传感器调度算法。“效用”是对给定传感器测量的效益的特定应用度量。在可以使用隐马尔可夫模型建模的传感环境中,在每个时刻选择适当的传感器组合可以在能量预算范围内实现预期效用的最大化。对于某些预算,基于效用的算法显示,在消耗相同能量的恒定占空比方案中,效用增益超过300%。这些好处取决于能源预算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Multilevel Quantization for Distributed Detection Linear Model-Based Intra Prediction in VVC Test Model Practical Concentric Open Sphere Cardioid Microphone Array Design for Higher Order Sound Field Capture Embedding Physical Augmentation and Wavelet Scattering Transform to Generative Adversarial Networks for Audio Classification with Limited Training Resources Improving ASR Robustness to Perturbed Speech Using Cycle-consistent Generative Adversarial Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1