Jianlei Cui, Xiaoying Ren, X. Mei, Z. Fan, Chenchen Huang, Zhijun Wang, Xiaofei Sun, Wenjun Wang
{"title":"Morphological characteristics and atomic evolution behavior of nanojoints in Ag nanowire interconnect network","authors":"Jianlei Cui, Xiaoying Ren, X. Mei, Z. Fan, Chenchen Huang, Zhijun Wang, Xiaofei Sun, Wenjun Wang","doi":"10.1088/2631-7990/acc434","DOIUrl":null,"url":null,"abstract":"Ag nanowires (AgNWs) have shown great application value in the field of flexible electronics due to their excellent optical and electrical properties, and the quality of its joints of AgNWs in the thin film network directly plays a key role in its performance. In order to further improve the joint quality of AgNWs under thermal excitation, the thermal welding process and atomic evolution behavior of AgNWs were investigated through a combination of in situ experimental and molecular dynamics simulations. The influence of processing time, temperature, and stress distribution due to spatial arrangement on nanojoints was systematically explored. What is more, the failure mechanisms and their atomic interface behavior of the nanojoints were also investigated.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"11 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acc434","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1
Abstract
Ag nanowires (AgNWs) have shown great application value in the field of flexible electronics due to their excellent optical and electrical properties, and the quality of its joints of AgNWs in the thin film network directly plays a key role in its performance. In order to further improve the joint quality of AgNWs under thermal excitation, the thermal welding process and atomic evolution behavior of AgNWs were investigated through a combination of in situ experimental and molecular dynamics simulations. The influence of processing time, temperature, and stress distribution due to spatial arrangement on nanojoints was systematically explored. What is more, the failure mechanisms and their atomic interface behavior of the nanojoints were also investigated.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.