Metasurface-Based Solar Absorption Prediction System Using Artificial Intelligence

IF 0.7 Q2 MATHEMATICS Muenster Journal of Mathematics Pub Date : 2023-06-06 DOI:10.1155/2023/9489270
M. Alam, Ahteshamul Haque, A. Khan, Samir Kasim, Amjad Ali Pasha, Aasim Zafar, K. Irshad, A. Chaudhary, Md. Samsuzzaman, R. Azim
{"title":"Metasurface-Based Solar Absorption Prediction System Using Artificial Intelligence","authors":"M. Alam, Ahteshamul Haque, A. Khan, Samir Kasim, Amjad Ali Pasha, Aasim Zafar, K. Irshad, A. Chaudhary, Md. Samsuzzaman, R. Azim","doi":"10.1155/2023/9489270","DOIUrl":null,"url":null,"abstract":"Solar energy is a significant, environment-friendly source of renewable energy. The solar absorber transforms solar radiation into heat energy as an effective green energy source. Therefore, increasing its absorbing capacity can improve a solar absorber’s effectiveness. This paper proposes a tungsten tantalum alloy with silicon dioxide (WTa-SiO2) ceramic layer-based solar absorber system with two different metasurfaces to enhance absorptivity and boost the solar absorber efficacy. The absorbance is also improved by adjusting the resonator thickness and material thickness, and the maximum visible light absorption is achieved by the suggested solar filter design. Moreover, Golden Eagle Optimization (GE)-based deep AlexNet algorithm is proposed for predicting the parameter variation and their effect on absorbance. The optimization technique is used to increase the effectiveness of the solar absorber by optimizing the design parameters. The features from the WTa-SiO2 design are extracted by the proposed Principal Component-Autoencoder (PC-AE) method. Experimental results show that the proposed system can effectively predict absorptivity with a reduced computational time. The proposed method demonstrates superior prediction performance with an absorption prediction efficiency of 99.8% compared to the existing methods. Thus, the proposed WTa-SiO2 metasurface-based solar absorber can be used for photovoltaic applications.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"59 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9489270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Solar energy is a significant, environment-friendly source of renewable energy. The solar absorber transforms solar radiation into heat energy as an effective green energy source. Therefore, increasing its absorbing capacity can improve a solar absorber’s effectiveness. This paper proposes a tungsten tantalum alloy with silicon dioxide (WTa-SiO2) ceramic layer-based solar absorber system with two different metasurfaces to enhance absorptivity and boost the solar absorber efficacy. The absorbance is also improved by adjusting the resonator thickness and material thickness, and the maximum visible light absorption is achieved by the suggested solar filter design. Moreover, Golden Eagle Optimization (GE)-based deep AlexNet algorithm is proposed for predicting the parameter variation and their effect on absorbance. The optimization technique is used to increase the effectiveness of the solar absorber by optimizing the design parameters. The features from the WTa-SiO2 design are extracted by the proposed Principal Component-Autoencoder (PC-AE) method. Experimental results show that the proposed system can effectively predict absorptivity with a reduced computational time. The proposed method demonstrates superior prediction performance with an absorption prediction efficiency of 99.8% compared to the existing methods. Thus, the proposed WTa-SiO2 metasurface-based solar absorber can be used for photovoltaic applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于超表面的人工智能太阳能吸收预测系统
太阳能是一种重要的、环境友好的可再生能源。太阳能吸收器将太阳辐射转化为热能,是一种有效的绿色能源。因此,增加其吸收能力可以提高太阳能吸收器的效率。本文提出了一种具有两种不同超表面的钨钽合金-二氧化硅(WTa-SiO2)陶瓷层基太阳能吸收体系统,以增强吸收体的吸收率和提高太阳能吸收体的效率。通过调整谐振腔厚度和材料厚度,提高了吸光度,并通过所建议的太阳滤光器设计实现了最大的可见光吸收。此外,提出了基于Golden Eagle Optimization (GE)的深度AlexNet算法来预测参数变化及其对吸光度的影响。采用优化技术,通过优化设计参数来提高太阳能吸收器的效率。采用主成分自编码器(PC-AE)方法提取WTa-SiO2设计的特征。实验结果表明,该系统可以有效地预测吸光率,减少了计算时间。与现有方法相比,该方法具有较好的预测效果,吸收预测效率达99.8%。因此,所提出的WTa-SiO2超表面太阳能吸收体可用于光伏应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
System Level Extropy of the Past Life of a Coherent System A New Proof of Rational Cycles for Collatz-Like Functions Using a Coprime Condition Adaptive Hierarchical Collocation Method for Solving Fractional Population Diffusion Model The Approximation of Generalized Log-Aesthetic Curves with G Weighted Extropy for Concomitants of Upper k-Record Values Based on Huang–Kotz Morgenstern of Bivariate Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1