Adaptive Hierarchical Collocation Method for Solving Fractional Population Diffusion Model

IF 0.7 Q2 MATHEMATICS Muenster Journal of Mathematics Pub Date : 2023-09-07 DOI:10.1155/2023/2323418
Linqiang Yang, Yafei Liu, Hongmei Ma, Xue Liu, Shuli Mei
{"title":"Adaptive Hierarchical Collocation Method for Solving Fractional Population Diffusion Model","authors":"Linqiang Yang, Yafei Liu, Hongmei Ma, Xue Liu, Shuli Mei","doi":"10.1155/2023/2323418","DOIUrl":null,"url":null,"abstract":"The fractional population diffusion model is crucial for pest prevention. This paper presents an adaptive hierarchical collocation method for solving this model, enhancing the efficiency of algorithms based on Low-Complexity Shannon-Cosine wavelet derived from combinatorial identity theory. This function, an improvement over previous constructs, mitigates the need for iterative computation of parameters and boasts advantages like interpolation, symmetry, and compact support. The method’s extension to other time-fractional partial differential equations (PDEs) is also possible. The algorithm’s complexity analysis illustrates the concise function’s efficiency advantage over the original expression when solving time-fractional PDEs. Comparatively, the method exhibits superior numerical performance to alternative wavelet spectral methods like the Shannon–Gabor wavelet.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"28 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2323418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The fractional population diffusion model is crucial for pest prevention. This paper presents an adaptive hierarchical collocation method for solving this model, enhancing the efficiency of algorithms based on Low-Complexity Shannon-Cosine wavelet derived from combinatorial identity theory. This function, an improvement over previous constructs, mitigates the need for iterative computation of parameters and boasts advantages like interpolation, symmetry, and compact support. The method’s extension to other time-fractional partial differential equations (PDEs) is also possible. The algorithm’s complexity analysis illustrates the concise function’s efficiency advantage over the original expression when solving time-fractional PDEs. Comparatively, the method exhibits superior numerical performance to alternative wavelet spectral methods like the Shannon–Gabor wavelet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解分数阶种群扩散模型的自适应分层配置方法
分级种群扩散模型对害虫防治具有重要意义。本文提出了一种自适应分层配置方法来求解该模型,提高了基于组合恒等理论的低复杂度香农余弦小波算法的效率。这个函数是对以前构造的改进,减少了对参数迭代计算的需要,并具有插值、对称和紧凑支持等优点。该方法也可以推广到其他时间分数阶偏微分方程。算法的复杂度分析表明,在求解时间分数阶偏微分方程时,简洁函数比原始表达式具有效率优势。与Shannon-Gabor小波等其他小波谱方法相比,该方法具有更好的数值性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
System Level Extropy of the Past Life of a Coherent System A New Proof of Rational Cycles for Collatz-Like Functions Using a Coprime Condition Adaptive Hierarchical Collocation Method for Solving Fractional Population Diffusion Model The Approximation of Generalized Log-Aesthetic Curves with G Weighted Extropy for Concomitants of Upper k-Record Values Based on Huang–Kotz Morgenstern of Bivariate Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1