Huiwen Jia, Siqian Shen, Jorge Alberto Ramírez García, Cong Shi
{"title":"Partner with a Third-Party Delivery Service or Not? A Prediction-and-Decision Tool for Restaurants Facing Takeout Demand Surges During a Pandemic","authors":"Huiwen Jia, Siqian Shen, Jorge Alberto Ramírez García, Cong Shi","doi":"10.1287/serv.2021.0294","DOIUrl":null,"url":null,"abstract":"Amidst the COVID-19 pandemic, restaurants become more reliant on no-contact pick-up or delivery ways for serving customers. As a result, they need to make tactical planning decisions such as whether to partner with online platforms, to form their own delivery team, or both. In this paper, we develop an integrated prediction-decision model to analyze the profit of combining the two approaches and to decide the needed number of drivers under stochastic demand. We first use the susceptible-infected-recovered (SIR) model to forecast future infected cases in a given region and then construct an autoregressive-moving-average (ARMA) regression model to predict food-ordering demand. Using predicted demand samples, we formulate a stochastic integer program to optimize food delivery plans. We conduct numerical studies using COVID-19 data and food-ordering demand data collected from local restaurants in Nuevo Leon, Mexico, from April to October 2020, to show results for helping restaurants build contingency plans under rapid market changes. Our method can be used under unexpected demand surges, various infection/vaccination status, and demand patterns. Our results show that a restaurant can benefit from partnering with third-party delivery platforms when (i) the subscription fee is low, (ii) customers can flexibly decide whether to order from platforms or from restaurants directly, (iii) customers require more efficient delivery, (iv) average delivery distance is long, or (v) demand variance is high.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/serv.2021.0294","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Amidst the COVID-19 pandemic, restaurants become more reliant on no-contact pick-up or delivery ways for serving customers. As a result, they need to make tactical planning decisions such as whether to partner with online platforms, to form their own delivery team, or both. In this paper, we develop an integrated prediction-decision model to analyze the profit of combining the two approaches and to decide the needed number of drivers under stochastic demand. We first use the susceptible-infected-recovered (SIR) model to forecast future infected cases in a given region and then construct an autoregressive-moving-average (ARMA) regression model to predict food-ordering demand. Using predicted demand samples, we formulate a stochastic integer program to optimize food delivery plans. We conduct numerical studies using COVID-19 data and food-ordering demand data collected from local restaurants in Nuevo Leon, Mexico, from April to October 2020, to show results for helping restaurants build contingency plans under rapid market changes. Our method can be used under unexpected demand surges, various infection/vaccination status, and demand patterns. Our results show that a restaurant can benefit from partnering with third-party delivery platforms when (i) the subscription fee is low, (ii) customers can flexibly decide whether to order from platforms or from restaurants directly, (iii) customers require more efficient delivery, (iv) average delivery distance is long, or (v) demand variance is high.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.