{"title":"Monitoring the population change and urban growth of four major Pakistan cities through spatial analysis of open source data","authors":"Rana Waqar Aslam, H. Shu, Andaleeb Yaseen","doi":"10.1080/19475683.2023.2166989","DOIUrl":null,"url":null,"abstract":"ABSTRACT Cities are complex and dynamic entities in close proximity of people, implying multi temporal observations to analyse and understand the urban context. At present, open-source data and geospatial intelligence are becoming the important means of exploring, monitoring and predicting urban status of area growth and population increase. In last few decades, unemployment and absence of infrastructures in the rural areas promoted the unplanned and haphazard urbanization across the urban centres in Pakistan. This study focuses on exploring the potential of open-source/freely available datasets for city mapping and monitoring spatially. The study gives a spatial perspective of rapidly growing cities of Pakistan using Google Earth Engine to classify Landsat images over last four decades, and discovers sprawl patterns across cities. The study works out that the built-up area is significantly increasing with population growth over four decades and there is a strong positive correlation between population growth and built-up expansion. Using Open-Source Data (Landsat images and LandScan data), this study has offered a technical solution of Google Earth Engine-supported analysis of statistics and machine learning to spatially monitoring the population change and urban growth of four major Pakistan cities. It is undoubted that our working results will provide the timely and cost-effective information to policymakers, Govt Officials and citizens for more sustainable urbanization.","PeriodicalId":46270,"journal":{"name":"Annals of GIS","volume":"60 1","pages":"355 - 367"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475683.2023.2166989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 5
Abstract
ABSTRACT Cities are complex and dynamic entities in close proximity of people, implying multi temporal observations to analyse and understand the urban context. At present, open-source data and geospatial intelligence are becoming the important means of exploring, monitoring and predicting urban status of area growth and population increase. In last few decades, unemployment and absence of infrastructures in the rural areas promoted the unplanned and haphazard urbanization across the urban centres in Pakistan. This study focuses on exploring the potential of open-source/freely available datasets for city mapping and monitoring spatially. The study gives a spatial perspective of rapidly growing cities of Pakistan using Google Earth Engine to classify Landsat images over last four decades, and discovers sprawl patterns across cities. The study works out that the built-up area is significantly increasing with population growth over four decades and there is a strong positive correlation between population growth and built-up expansion. Using Open-Source Data (Landsat images and LandScan data), this study has offered a technical solution of Google Earth Engine-supported analysis of statistics and machine learning to spatially monitoring the population change and urban growth of four major Pakistan cities. It is undoubted that our working results will provide the timely and cost-effective information to policymakers, Govt Officials and citizens for more sustainable urbanization.