Performance of a neuro-model-based robot controller: adaptability and noise rejection

A. Poo, M. Ang, C. Teo, Q. Li
{"title":"Performance of a neuro-model-based robot controller: adaptability and noise rejection","authors":"A. Poo, M. Ang, C. Teo, Q. Li","doi":"10.1049/ISE.1992.0005","DOIUrl":null,"url":null,"abstract":"Effective control strategies for robotic manipulators usually require the on-line computation of the robot dynamic model in real time. However, the complexity of the robot dynamic model makes this difficult to achieve in practice, and multiprocessor controller architectures appear attractive for real-time implementation inside the control servo loop. Furthermore, inevitable modelling errors, changing parameter values and disturbances can compromise controller stability and performance. In this paper, the performance of a neuro-model-based controller architecture is investigated. The neural network is used to adapt to unmodelled dynamics and parameter modelling errors. Simulation of the neuro-model-based control of a one-link robot demonstrates an improved performance over standard model-based control algorithm, in the presence of modelling errors and in the presence of disturbance and noise. >","PeriodicalId":55165,"journal":{"name":"Engineering Intelligent Systems for Electrical Engineering and Communications","volume":"65 1","pages":"50-62"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Intelligent Systems for Electrical Engineering and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ISE.1992.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Effective control strategies for robotic manipulators usually require the on-line computation of the robot dynamic model in real time. However, the complexity of the robot dynamic model makes this difficult to achieve in practice, and multiprocessor controller architectures appear attractive for real-time implementation inside the control servo loop. Furthermore, inevitable modelling errors, changing parameter values and disturbances can compromise controller stability and performance. In this paper, the performance of a neuro-model-based controller architecture is investigated. The neural network is used to adapt to unmodelled dynamics and parameter modelling errors. Simulation of the neuro-model-based control of a one-link robot demonstrates an improved performance over standard model-based control algorithm, in the presence of modelling errors and in the presence of disturbance and noise. >
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经模型的机器人控制器性能:适应性和噪声抑制
有效的机械臂控制策略通常需要实时在线计算机器人动力学模型。然而,机器人动态模型的复杂性使得这在实践中难以实现,而多处理器控制器架构对于控制伺服回路内的实时实现显得很有吸引力。此外,不可避免的建模误差、参数值的变化和干扰会损害控制器的稳定性和性能。本文研究了一种基于神经模型的控制器结构的性能。神经网络用于适应未建模的动力学和参数建模误差。基于神经模型的单连杆机器人控制仿真表明,在存在建模误差和干扰和噪声的情况下,基于神经模型的控制算法的性能优于标准的基于模型的控制算法。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel genetic algorithm for generation expansion planning Neural network based classification system for texture images with its applications TIGER: real-time situation assessment of dynamic systems Auto-associative memory using n-tuple techniques Scheduling theory and practice: Minsk group results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1