Reactive Power Optimization of Distribution Network on Improved Genetic Algorithm

Xiaomeng Wu, Xinyu Guo, Fei Li, Achao Zhang
{"title":"Reactive Power Optimization of Distribution Network on Improved Genetic Algorithm","authors":"Xiaomeng Wu, Xinyu Guo, Fei Li, Achao Zhang","doi":"10.1109/IAEAC.2018.8577541","DOIUrl":null,"url":null,"abstract":"An improved genetic algorithm is presented for solving the problem of slow convergence speed and premature phenomenon using traditional genetic algorithm in this paper. Combined with the characteristics of reactive power optimization of power system, binary code, initial population, crossover, mutation and fitness function had been improved by the proposed algorithm. The property and accuracy with the IEEE14 and IEEE30 bus system are tested, the results show that the model and algorithm avoid effectively premature phenomenon and reduce the active power loss in the evolution.","PeriodicalId":6573,"journal":{"name":"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"24 1","pages":"2048-2052"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC.2018.8577541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An improved genetic algorithm is presented for solving the problem of slow convergence speed and premature phenomenon using traditional genetic algorithm in this paper. Combined with the characteristics of reactive power optimization of power system, binary code, initial population, crossover, mutation and fitness function had been improved by the proposed algorithm. The property and accuracy with the IEEE14 and IEEE30 bus system are tested, the results show that the model and algorithm avoid effectively premature phenomenon and reduce the active power loss in the evolution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进遗传算法的配电网无功优化
针对传统遗传算法存在的收敛速度慢和早熟现象,提出了一种改进的遗传算法。结合电力系统无功优化的特点,对二进制码、初始种群、交叉、突变和适应度函数进行了改进。在IEEE14和IEEE30总线系统上进行了性能和精度测试,结果表明该模型和算法有效地避免了演进过程中的早熟现象,降低了有功损耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent module for recognizing emotions by voice Modeling of thermophysiological state of man Intelligent support system for agro-technological decisions for sowing fields Analysis of visual object tracking algorithms for real-time systems Choosing the best parameters for method of deformed stars in n-dimensional space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1