Swimming performance of Arctic grayling (Thymallus arcticus Pallas) in an open-channel flume

IF 4.6 Q2 ENVIRONMENTAL SCIENCES Journal of ecohydraulics Pub Date : 2020-01-02 DOI:10.1080/24705357.2019.1599306
David R. Dockery, Erin Ryan, K. Kappenman, Matt Blank
{"title":"Swimming performance of Arctic grayling (Thymallus arcticus Pallas) in an open-channel flume","authors":"David R. Dockery, Erin Ryan, K. Kappenman, Matt Blank","doi":"10.1080/24705357.2019.1599306","DOIUrl":null,"url":null,"abstract":"Abstract Installing effective fish passage structures that provide connectivity for Arctic grayling is a promising conservation strategy for imperiled populations. The swimming abilities and behaviour of age 1+ adfluvial grayling from Montana were examined in an open-channel flume to provide design information for passage structures. Swimming behaviours and distance of ascent (Dmax) in a 12.25 m section was measured at four velocities (0.49, 1.04, 1.43, 2.26 m/s) at an average temperature of 11.3 °C (SD = 0.7); effects of fish length and time of day were also examined. Median Dmax was equal to 12.25 m for all treatments except the 2.26 m/s treatment, where it dropped to 4.5 m. Average fish swimming velocities increased from 0.85 to 2.97 m/s from the lowest to the highest velocity treatments and the maximum velocity observed was 4.03 m/s. Survival model parameterization allowed prediction of the proportion passing relative to distance for covariate values within the range tested. There was strong evidence Dmax was related to water velocity (p < 0.001) and an 82% decrease in Dmax is estimated for every 1 m/s increase in water velocity. There was no evidence for relationships among distance of ascent and fish length (p = 0.91) or time of day (p = 0.81).","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ecohydraulics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705357.2019.1599306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract Installing effective fish passage structures that provide connectivity for Arctic grayling is a promising conservation strategy for imperiled populations. The swimming abilities and behaviour of age 1+ adfluvial grayling from Montana were examined in an open-channel flume to provide design information for passage structures. Swimming behaviours and distance of ascent (Dmax) in a 12.25 m section was measured at four velocities (0.49, 1.04, 1.43, 2.26 m/s) at an average temperature of 11.3 °C (SD = 0.7); effects of fish length and time of day were also examined. Median Dmax was equal to 12.25 m for all treatments except the 2.26 m/s treatment, where it dropped to 4.5 m. Average fish swimming velocities increased from 0.85 to 2.97 m/s from the lowest to the highest velocity treatments and the maximum velocity observed was 4.03 m/s. Survival model parameterization allowed prediction of the proportion passing relative to distance for covariate values within the range tested. There was strong evidence Dmax was related to water velocity (p < 0.001) and an 82% decrease in Dmax is estimated for every 1 m/s increase in water velocity. There was no evidence for relationships among distance of ascent and fish length (p = 0.91) or time of day (p = 0.81).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
北极灰鲑(thyymallus arcticus Pallas)在明渠水槽中的游泳表现
安装有效的鱼类通道结构,为北极灰鲑提供连通性是一种有前途的濒危种群保护策略。在蒙大拿州的一个明渠水槽中测试了1岁以上的河流灰鲑的游泳能力和行为,为通道结构的设计提供了信息。在平均温度11.3°C (SD = 0.7)下,以4种速度(0.49、1.04、1.43、2.26 m/s)测量12.25 m段的游泳行为和上升距离(Dmax);还研究了鱼的长度和一天的时间的影响。除2.26 m/s处理外,所有处理的中位Dmax均为12.25 m,降至4.5 m。从最低速度到最高速度处理,鱼的平均游泳速度从0.85增加到2.97 m/s,最大速度为4.03 m/s。生存模型参数化允许预测协变量值在测试范围内相对于距离的通过比例。有强有力的证据表明Dmax与水流速度有关(p < 0.001),估计水流速度每增加1 m/s, Dmax降低82%。上升距离与鱼的长度(p = 0.91)或时间(p = 0.81)之间没有关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
Fish in the fast lane: the stressful consequences of speeding through a flume Evaluating hydrodynamics and implications to sediment transport for tidal restoration at Swan Cove Pool, Virginia Potential for juvenile freshwater mussels to settle onto riverbeds from field investigation The influence of channel morphology and hydraulic complexity on larval pallid sturgeon ( Scaphirhynchus albus ) drift and dispersal dynamics in the Fort Peck Segment, Upper Missouri River: insights from particle tracking simulations Limiting downstream dispersal of invasive carp egg surrogates using a laboratory-scale oblique bubble screen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1