Exploring electronic, optical, and phononic properties of MgX (X = C, N, and O) monolayers using first principle calculations

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Functional Materials Letters Pub Date : 2023-05-12 DOI:10.1142/s1793604723510086
N. R. Abdullah, B. Abdullah, Y. H. Azeez, V. Gudmundsson
{"title":"Exploring electronic, optical, and phononic properties of MgX (X = C, N, and O) monolayers using first principle calculations","authors":"N. R. Abdullah, B. Abdullah, Y. H. Azeez, V. Gudmundsson","doi":"10.1142/s1793604723510086","DOIUrl":null,"url":null,"abstract":"The electronic, the thermal, and the optical properties of hexagonal MgX monolayers (where X=C, N, and O) are investigated via first principles studies. Ab-initio molecular dynamic, AIMD, simulations using NVT ensembles are performed to check the thermodynamic stability of the monolayers. We find that an MgO monolayer has semiconductor properties with a good thermodynamic stability, while the MgC and the MgN monolayers have metallic characters. The calculated phonon band structures of all the three considered monolayers shows no imaginary nonphysical frequencies, thus indicating that they all have excellent dynamic stability. The MgO monolayer has a larger heat capacity then the MgC and the MgN monolayers. The metallic monolayers demonstrate optical response in the IR as a consequence of the metal properties, whereas the semiconducting MgO monolayer demonstrates an active optical response in the near-UV region. The optical response in the near-UV is beneficial for nanoelectronics and photoelectric applications. A semiconducting monolayer is a great choice for thermal management applications since its thermal properties are more attractive than those of the metallic monolayer in terms of heat capacity, which is related to the change in the internal energy of the system.","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"12 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1142/s1793604723510086","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electronic, the thermal, and the optical properties of hexagonal MgX monolayers (where X=C, N, and O) are investigated via first principles studies. Ab-initio molecular dynamic, AIMD, simulations using NVT ensembles are performed to check the thermodynamic stability of the monolayers. We find that an MgO monolayer has semiconductor properties with a good thermodynamic stability, while the MgC and the MgN monolayers have metallic characters. The calculated phonon band structures of all the three considered monolayers shows no imaginary nonphysical frequencies, thus indicating that they all have excellent dynamic stability. The MgO monolayer has a larger heat capacity then the MgC and the MgN monolayers. The metallic monolayers demonstrate optical response in the IR as a consequence of the metal properties, whereas the semiconducting MgO monolayer demonstrates an active optical response in the near-UV region. The optical response in the near-UV is beneficial for nanoelectronics and photoelectric applications. A semiconducting monolayer is a great choice for thermal management applications since its thermal properties are more attractive than those of the metallic monolayer in terms of heat capacity, which is related to the change in the internal energy of the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用第一性原理计算探索MgX (X = C, N和O)单层的电子,光学和声子性质
通过第一性原理研究了六方MgX单层(其中X=C, N和O)的电子,热学和光学性质。利用NVT系统进行了Ab-initio分子动力学(AIMD)模拟,以验证单层膜的热力学稳定性。我们发现MgO单层具有半导体性质,具有良好的热力学稳定性,而MgC和MgN单层具有金属性质。计算得到的三种单层声子带结构都没有虚的非物理频率,表明它们都具有良好的动态稳定性。MgO单层比MgC和MgN单层具有更大的热容。金属单层在红外波段表现出光学响应,这是金属性质的结果,而半导体MgO单层在近紫外区表现出主动光学响应。近紫外的光学响应有利于纳米电子学和光电应用。半导体单分子层是热管理应用的一个很好的选择,因为它的热性能比金属单分子层的热容更有吸引力,这与系统内能的变化有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Functional Materials Letters
Functional Materials Letters 工程技术-材料科学:综合
CiteScore
2.40
自引率
7.70%
发文量
57
审稿时长
1.9 months
期刊介绍: Functional Materials Letters is an international peer-reviewed scientific journal for original contributions to research on the synthesis, behavior and characterization of functional materials. The journal seeks to provide a rapid forum for the communication of novel research of high quality and with an interdisciplinary flavor. The journal is an ideal forum for communication amongst materials scientists and engineers, chemists and chemical engineers, and physicists in the dynamic fields associated with functional materials. Functional materials are designed to make use of their natural or engineered functionalities to respond to changes in electrical and magnetic fields, physical and chemical environment, etc. These design considerations are fundamentally different to those relevant for structural materials and are the focus of this journal. Functional materials play an increasingly important role in the development of the field of materials science and engineering. The scope of the journal covers theoretical and experimental studies of functional materials, characterization and new applications-related research on functional materials in macro-, micro- and nano-scale science and engineering. Among the topics covered are ferroelectric, multiferroic, ferromagnetic, magneto-optical, optoelectric, thermoelectric, energy conversion and energy storage, sustainable energy and shape memory materials.
期刊最新文献
Efficient degradation of ciprofloxacin by waste eggshells derived ES/CuS heterostructure under visible light Influence of 2D CuxAl(100−x) electrodes on the CuxAl(100−x)/Cu21(SiO2)79/W memristive device Electronic properties of individual CsPbI2Br nanocrystals investigated by LT-STM Preparation and photoluminescence study of rare-earth-free red emitting La3Ga5SiO14:Mn4+phosphors Modulation mechanism of electronic and optical properties of Cs2SnX6(X = Cl, Br and I) under hydrostatic or uniaxial pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1