S. Seidel, Thomas Harmening, Jutta Kösters, Aylin Koldemir, Wilma Pröbsting, Simon Engelbert, Rainer Pöttgen
{"title":"Eu2Ru3Si5 and Eu2Ir3Ga5 – first europium compounds with U2Mn3Si5-type structure but different europium valence","authors":"S. Seidel, Thomas Harmening, Jutta Kösters, Aylin Koldemir, Wilma Pröbsting, Simon Engelbert, Rainer Pöttgen","doi":"10.1515/znb-2023-0009","DOIUrl":null,"url":null,"abstract":"Abstract The silicide Eu2Ru3Si5 was synthesized from the elements in a sealed tantalum tube in a high-frequency furnace, while the gallide Eu2Ir3Ga5 was obtained by arc-melting. Both structures were refined from single-crystal X-ray diffractometer data: P4/mnc, a = 1072.69(8), c = 569.55(5) pm, wR = 0.0453, 617 F2 values, 31 variables for Eu2Ru3Si5 and a = 1122.18(7), c = 583.17(4) pm, wR = 0.0546, 729 F2 values, 31 variables for Eu2Ir3Ga4.95(1). The gallide shows small defects on one 8h site. The transition metal atoms in Eu2Ru3Si5 and Eu2Ir3Ga5 have octahedral p element coordination. These Ru@Si6 respectively Ir@Ga6 polyhedra are condensed to three-dimensional [Ru3Si5]6− respectively [Ir3Ga5]4− polyanionic networks. The ground states of Eu(III) in Eu2Ru3Si5 and Eu(II) in Eu2Ir3Ga5 were determined by 151Eu Mössbauer spectroscopy.","PeriodicalId":23831,"journal":{"name":"Zeitschrift für Naturforschung B","volume":"30 1","pages":"293 - 300"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znb-2023-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The silicide Eu2Ru3Si5 was synthesized from the elements in a sealed tantalum tube in a high-frequency furnace, while the gallide Eu2Ir3Ga5 was obtained by arc-melting. Both structures were refined from single-crystal X-ray diffractometer data: P4/mnc, a = 1072.69(8), c = 569.55(5) pm, wR = 0.0453, 617 F2 values, 31 variables for Eu2Ru3Si5 and a = 1122.18(7), c = 583.17(4) pm, wR = 0.0546, 729 F2 values, 31 variables for Eu2Ir3Ga4.95(1). The gallide shows small defects on one 8h site. The transition metal atoms in Eu2Ru3Si5 and Eu2Ir3Ga5 have octahedral p element coordination. These Ru@Si6 respectively Ir@Ga6 polyhedra are condensed to three-dimensional [Ru3Si5]6− respectively [Ir3Ga5]4− polyanionic networks. The ground states of Eu(III) in Eu2Ru3Si5 and Eu(II) in Eu2Ir3Ga5 were determined by 151Eu Mössbauer spectroscopy.