COVID-19 dispersion in naturally-ventilated classrooms: a study on inlet-outlet characteristics

IF 2.2 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Building Performance Simulation Pub Date : 2022-09-03 DOI:10.1080/19401493.2022.2063946
Günsu Merin Abbas, Ipek Gursel Dino
{"title":"COVID-19 dispersion in naturally-ventilated classrooms: a study on inlet-outlet characteristics","authors":"Günsu Merin Abbas, Ipek Gursel Dino","doi":"10.1080/19401493.2022.2063946","DOIUrl":null,"url":null,"abstract":"Infectious aerosol dispersion poses significant infection risks (i.e., COVID-19) in classrooms due to dense and long occupancy. Natural ventilation is an effective strategy to reduce airborne infection transmission. The building-related parameters, particularly openings, determine the natural ventilation effectiveness in reducing contaminant dispersion, necessitating an inquiry due to complex dispersion and airflow patterns. This paper investigates the correlation between window height, natural ventilation, and COVID-19 dispersion. A simulation pipeline involving a parametric 3D design environment, computational fluid dynamics (CFD), and energy simulations is developed and implemented on nine design scenarios representing different inlet-outlet heights of a free-running (no heating, cooling or mechanical ventilation) classroom. The inlet height and the inlet-outlet height difference have a considerable impact on indoor infection risk confirming that stack ventilation and the Bernoulli effect decrease indoor contaminant concentration. Proximity to openings does not ensure lower contamination levels. Proximity to the contaminant does not result in higher contamination levels.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"65 1","pages":"656 - 677"},"PeriodicalIF":2.2000,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2022.2063946","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Infectious aerosol dispersion poses significant infection risks (i.e., COVID-19) in classrooms due to dense and long occupancy. Natural ventilation is an effective strategy to reduce airborne infection transmission. The building-related parameters, particularly openings, determine the natural ventilation effectiveness in reducing contaminant dispersion, necessitating an inquiry due to complex dispersion and airflow patterns. This paper investigates the correlation between window height, natural ventilation, and COVID-19 dispersion. A simulation pipeline involving a parametric 3D design environment, computational fluid dynamics (CFD), and energy simulations is developed and implemented on nine design scenarios representing different inlet-outlet heights of a free-running (no heating, cooling or mechanical ventilation) classroom. The inlet height and the inlet-outlet height difference have a considerable impact on indoor infection risk confirming that stack ventilation and the Bernoulli effect decrease indoor contaminant concentration. Proximity to openings does not ensure lower contamination levels. Proximity to the contaminant does not result in higher contamination levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自然通风教室中COVID-19扩散:入口-出口特征研究
由于教室密集和长时间的占用,传染性气溶胶扩散会造成重大感染风险(即COVID-19)。自然通风是减少空气传播感染的有效策略。与建筑相关的参数,特别是开口,决定了自然通风在减少污染物扩散方面的有效性,由于复杂的扩散和气流模式,需要进行调查。本文研究了窗户高度、自然通风与COVID-19扩散之间的相关性。模拟管道包括参数化三维设计环境、计算流体动力学(CFD)和能量模拟,并在代表自由运行(无供暖、制冷或机械通风)教室的不同进出口高度的九个设计场景中实现。进风口高度和进风口高度差对室内感染风险有较大影响,证实了烟囱通风和伯努利效应降低了室内污染物浓度。靠近开口不能保证较低的污染水平。接近污染物不会导致更高的污染水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Building Performance Simulation
Journal of Building Performance Simulation CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
5.50
自引率
12.00%
发文量
55
审稿时长
12 months
期刊介绍: The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies We welcome building performance simulation contributions that explore the following topics related to buildings and communities: -Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics). -Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems. -Theoretical aspects related to occupants, weather data, and other boundary conditions. -Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid. -Uncertainty, sensitivity analysis, and calibration. -Methods and algorithms for validating models and for verifying solution methods and tools. -Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics. -Techniques for educating and training tool users. -Software development techniques and interoperability issues with direct applicability to building performance simulation. -Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.
期刊最新文献
Comparing overheating risk and mitigation strategies for two Canadian schools by using building simulation calibrated with measured data Using Fourier series to obtain cross periodic wall response factors Limitations and issues of conventional artificial neural network-based surrogate models for building energy retrofit An empirical review of methods to assess overheating in buildings in the context of changes to extreme heat events Coupling BIM and detailed modelica simulations of HVAC systems in a common data environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1